Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1570394723314078944710 ~2003
1570407911314081582310 ~2003
1570419443314083888710 ~2003
15704208013454925762311 ~2005
1570440251314088050310 ~2003
1570458551314091710310 ~2003
1570501703314100340710 ~2003
1570564631314112926310 ~2003
1570618019314123603910 ~2003
1570634953942380971910 ~2004
1570635791314127158310 ~2003
1570783619314156723910 ~2003
1570870991314174198310 ~2003
15708834411256706752911 ~2004
1570970123314194024710 ~2003
1570998623314199724710 ~2003
1571036279314207255910 ~2003
1571037001942622200710 ~2004
1571063999314212799910 ~2003
1571115011314223002310 ~2003
1571124911314224982310 ~2003
1571193623314238724710 ~2003
1571198963314239792710 ~2003
1571215043314243008710 ~2003
1571297303314259460710 ~2003
Exponent Prime Factor Digits Year
1571313959314262791910 ~2003
15713343111257067448911 ~2004
1571347031314269406310 ~2003
1571405039314281007910 ~2003
15714217693457127891911 ~2005
1571434811314286962310 ~2003
1571466131314293226310 ~2003
1571473499314294699910 ~2003
15714833271257186661711 ~2004
15715096134714528839111 ~2006
15715386072514461771311 ~2005
1571568083314313616710 ~2003
1571601413942960847910 ~2004
15716218672828919360711 ~2005
1571655497942993298310 ~2004
15717027291257362183311 ~2004
1571728997943037398310 ~2004
1571813759314362751910 ~2003
1571827391314365478310 ~2003
1571917211314383442310 ~2003
1571940431314388086310 ~2003
15719716971257577357711 ~2004
15720501133772920271311 ~2005
1572071843314414368710 ~2003
1572079919314415983910 ~2003
Exponent Prime Factor Digits Year
1572132491314426498310 ~2003
1572157799314431559910 ~2003
1572176003314435200710 ~2003
1572201161943320696710 ~2004
1572268499314453699910 ~2003
1572270671314454134310 ~2003
15723899712515823953711 ~2005
1572415811314483162310 ~2003
1572470051314494010310 ~2003
1572493453943496071910 ~2004
1572551759314510351910 ~2003
1572573311314514662310 ~2003
1572576179314515235910 ~2003
157265068710379494534312 ~2007
1572701771314540354310 ~2003
15727208037863604015111 ~2006
1572747251314549450310 ~2003
1572749771314549954310 ~2003
1572861299314572259910 ~2003
1572872417943723450310 ~2004
1572905759314581151910 ~2003
1572910103314582020710 ~2003
1572925691314585138310 ~2003
15729667973775120312911 ~2005
1573070399314614079910 ~2003
Exponent Prime Factor Digits Year
1573209433943925659910 ~2004
1573218551314643710310 ~2003
1573226411314645282310 ~2003
1573234583314646916710 ~2003
1573257659314651531910 ~2003
1573262591314652518310 ~2003
1573267691314653538310 ~2003
15733401012517344161711 ~2005
1573408799314681759910 ~2003
15734540932202835730311 ~2005
1573473983314694796710 ~2003
1573505399314701079910 ~2003
1573519691314703938310 ~2003
1573631051314726210310 ~2003
157370122113533830500712 ~2007
1573723799314744759910 ~2003
15737285211258982816911 ~2004
1573874579314774915910 ~2003
1573954799314790959910 ~2003
1573991819314798363910 ~2003
1574124551314824910310 ~2003
1574196671314839334310 ~2003
1574267459314853491910 ~2003
1574267951314853590310 ~2003
1574372713944623627910 ~2004
Home
5.157.210 digits
e-mail
25-11-02