Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2669920343533984068710 ~2005
2670059963534011992710 ~2005
267023326321895912756712 ~2009
2670247523534049504710 ~2005
2670302639534060527910 ~2005
2670315311534063062310 ~2005
2670381179534076235910 ~2005
2670402011534080402310 ~2005
2670457043534091408710 ~2005
2670488003534097600710 ~2005
2670512483534102496710 ~2005
26705752935875265644711 ~2007
2670711779534142355910 ~2005
2670730703534146140710 ~2005
26707429371602445762311 ~2006
2670810683534162136710 ~2005
26708285692136662855311 ~2006
2670857603534171520710 ~2005
26709409018547010883311 ~2008
2671024871534204974310 ~2005
2671063319534212663910 ~2005
2671065311534213062310 ~2005
2671084919534216983910 ~2005
26711335032671133503111 ~2006
2671194299534238859910 ~2005
Exponent Prime Factor Digits Year
2671235639534247127910 ~2005
26712748994808294818311 ~2007
2671346939534269387910 ~2005
2671399151534279830310 ~2005
2671511543534302308710 ~2005
2671669139534333827910 ~2005
2671794371534358874310 ~2005
2671883243534376648710 ~2005
26718962171603137730311 ~2006
26719379771603162786311 ~2006
2671998503534399700710 ~2005
2672010779534402155910 ~2005
2672208443534441688710 ~2005
26722248112137779848911 ~2006
2672230139534446027910 ~2005
2672275799534455159910 ~2005
2672355863534471172710 ~2005
2672389259534477851910 ~2005
2672395751534479150310 ~2005
2672413259534482651910 ~2005
2672451623534490324710 ~2005
26724636412137970912911 ~2006
26724721571603483294311 ~2006
2672496731534499346310 ~2005
26725655093741591712711 ~2007
Exponent Prime Factor Digits Year
26726004171603560250311 ~2006
2672645483534529096710 ~2005
26727239234276358276911 ~2007
2672751923534550384710 ~2005
2672757383534551476710 ~2005
2672868083534573616710 ~2005
2673043811534608762310 ~2005
26731387571603883254311 ~2006
2673152171534630434310 ~2005
26731691411603901484711 ~2006
26732206611603932396711 ~2006
26732226771603933606311 ~2006
26733261011603995660711 ~2006
2673387023534677404710 ~2005
2673450239534690047910 ~2005
26735689012138855120911 ~2006
267363937346521325090312 ~2009
2673664991534732998310 ~2005
2673935399534787079910 ~2005
26739897371604393842311 ~2006
2673995171534799034310 ~2005
2674029791534805958310 ~2005
26740665371604439922311 ~2006
2674089371534817874310 ~2005
26741026032674102603111 ~2006
Exponent Prime Factor Digits Year
2674289171534857834310 ~2005
26743303874278928619311 ~2007
2674473299534894659910 ~2005
2674476923534895384710 ~2005
2674531571534906314310 ~2005
2674585271534917054310 ~2005
2674625711534925142310 ~2005
2674631243534926248710 ~2005
26746727872139738229711 ~2006
26747314011604838840711 ~2006
26747494571604849674311 ~2006
26747835131604870107911 ~2006
26749071592139925727311 ~2006
26750406531605024391911 ~2006
2675154539535030907910 ~2005
2675174039535034807910 ~2005
267517746717656171282312 ~2008
26752025571605121534311 ~2006
26753441712675344171111 ~2006
26755055414280808865711 ~2007
2675720303535144060710 ~2005
2675753519535150703910 ~2005
26757600771605456046311 ~2006
2675776151535155230310 ~2005
26759261512140740920911 ~2006
Home
4.903.097 digits
e-mail
25-07-08