Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1723308539344661707910 ~2003
1723345499344669099910 ~2003
1723556603344711320710 ~2003
1723584311344716862310 ~2003
1723679663344735932710 ~2003
1723774631344754926310 ~2003
17238657913102958423911 ~2005
17238889971034333398311 ~2004
1723938383344787676710 ~2003
17240379671724037967111 ~2005
17240409611034424576711 ~2004
1724058431344811686310 ~2003
1724077919344815583910 ~2003
17240856593103354186311 ~2005
17241016371034460982311 ~2004
1724107943344821588710 ~2003
1724112083344822416710 ~2003
17241138891379291111311 ~2005
1724177219344835443910 ~2003
1724238599344847719910 ~2003
1724306231344861246310 ~2003
1724348159344869631910 ~2003
1724397299344879459910 ~2003
1724451671344890334310 ~2003
17244742911379579432911 ~2005
Exponent Prime Factor Digits Year
17246015692414442196711 ~2005
17246650811034799048711 ~2004
17248778716899511484111 ~2006
17249747531034984851911 ~2004
17249760834484937815911 ~2006
1725004643345000928710 ~2003
17250268931035016135911 ~2004
1725034919345006983910 ~2003
17250384531035023071911 ~2004
17250597711380047816911 ~2005
17251031391380082511311 ~2005
1725108263345021652710 ~2003
1725196859345039371910 ~2003
1725202439345040487910 ~2003
1725217691345043538310 ~2003
17252639092415369472711 ~2005
1725298079345059615910 ~2003
17253012171035180730311 ~2004
1725312503345062500710 ~2003
1725315659345063131910 ~2003
1725319223345063844710 ~2003
17253303611035198216711 ~2004
17253341411035200484711 ~2004
1725375779345075155910 ~2003
1725392171345078434310 ~2003
Exponent Prime Factor Digits Year
1725415319345083063910 ~2003
1725446231345089246310 ~2003
1725451919345090383910 ~2003
17254533771035272026311 ~2004
17254725595521512188911 ~2006
1725588803345117760710 ~2003
1725796151345159230310 ~2003
17258165511380653240911 ~2005
17258214771380657181711 ~2005
1725847223345169444710 ~2003
1726009163345201832710 ~2003
17260617731035637063911 ~2004
1726204379345240875910 ~2003
1726247903345249580710 ~2003
1726385099345277019910 ~2003
1726393199345278639910 ~2003
17264310611035858636711 ~2004
1726464731345292946310 ~2003
17264780571381182445711 ~2005
1726486511345297302310 ~2003
17266183011035970980711 ~2004
1726642979345328595910 ~2003
17266572531035994351911 ~2004
1726664039345332807910 ~2003
1726823963345364792710 ~2003
Exponent Prime Factor Digits Year
17268505971036110358311 ~2004
1726884623345376924710 ~2003
1726884839345376967910 ~2003
1726906319345381263910 ~2003
1726906763345381352710 ~2003
1726917359345383471910 ~2003
1726938683345387736710 ~2003
17269395611036163736711 ~2004
1727051951345410390310 ~2003
1727078459345415691910 ~2003
1727141519345428303910 ~2003
17271416271381713301711 ~2005
17271880811036312848711 ~2004
1727201771345440354310 ~2003
1727201831345440366310 ~2003
17273588271381887061711 ~2005
1727423231345484646310 ~2003
1727457923345491584710 ~2003
1727550911345510182310 ~2003
1727589863345517972710 ~2003
1727597243345519448710 ~2003
1727597603345519520710 ~2003
1727670071345534014310 ~2003
1727733863345546772710 ~2003
1727741699345548339910 ~2003
Home
5.232.152 digits
e-mail
25-12-07