Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
380068434117483147968712 ~2009
38007852916841413523911 ~2008
3800887991760177598310 ~2006
3800901431760180286310 ~2006
38009773812280586428711 ~2007
38011454772280687286311 ~2007
3801423539760284707910 ~2006
3801499211760299842310 ~2006
38016787873801678787111 ~2008
3801684119760336823910 ~2006
38017167012281030020711 ~2007
3801731579760346315910 ~2006
38018562593041485007311 ~2007
38018702513041496200911 ~2007
3801963383760392676710 ~2006
3802077179760415435910 ~2006
3802415063760483012710 ~2006
3802464839760492967910 ~2006
38025790199126189645711 ~2008
3802600163760520032710 ~2006
3803040119760608023910 ~2006
38030786039888004367911 ~2009
3803144531760628906310 ~2006
38032004693042560375311 ~2007
38032483879127796128911 ~2008
Exponent Prime Factor Digits Year
38033400412282004024711 ~2007
38036831332282209879911 ~2007
3803728739760745747910 ~2006
38037500813043000064911 ~2007
3803753171760750634310 ~2006
38038550873043084069711 ~2007
38038826093043106087311 ~2007
3804263783760852756710 ~2006
3804409811760881962310 ~2006
38044732079130735696911 ~2008
3804617699760923539910 ~2006
3804661571760932314310 ~2006
38049813732282988823911 ~2007
38051098212283065892711 ~2007
3805184759761036951910 ~2006
3805203719761040743910 ~2006
3805299419761059883910 ~2006
38053477132283208627911 ~2007
38054276273044342101711 ~2007
38054367739133048255311 ~2008
38054931736088789076911 ~2008
3805508771761101754310 ~2006
3805515383761103076710 ~2006
3805535351761107070310 ~2006
380562517146428627086312 ~2010
Exponent Prime Factor Digits Year
38056648613044531888911 ~2007
3805667759761133551910 ~2006
3805788683761157736710 ~2006
3805853459761170691910 ~2006
3806026403761205280710 ~2006
38060563613044845088911 ~2007
3806058323761211664710 ~2006
3806086499761217299910 ~2006
3806087303761217460710 ~2006
3806187923761237584710 ~2006
3806367671761273534310 ~2006
3806385503761277100710 ~2006
38064279012283856740711 ~2007
3806635559761327111910 ~2006
38066870476852036684711 ~2008
3806800583761360116710 ~2006
38069551372284173082311 ~2007
3807263783761452756710 ~2006
3807313943761462788710 ~2006
38073698695330317816711 ~2008
3807422519761484503910 ~2006
3807448751761489750310 ~2006
38074781332284486879911 ~2007
3807714479761542895910 ~2006
3807828851761565770310 ~2006
Exponent Prime Factor Digits Year
3807832103761566420710 ~2006
3807949451761589890310 ~2006
38079531479900678182311 ~2009
3808019543761603908710 ~2006
3808110863761622172710 ~2006
3808171739761634347910 ~2006
3808246163761649232710 ~2006
3808255499761651099910 ~2006
380833906312948352814312 ~2009
3808513931761702786310 ~2006
3808517579761703515910 ~2006
3808857683761771536710 ~2006
38089258732285355523911 ~2007
3808930259761786051910 ~2006
3809142671761828534310 ~2006
38091431935332800470311 ~2008
38094713572285682814311 ~2007
38097292332285837539911 ~2007
38097732173047818573711 ~2007
38098821773047905741711 ~2007
38099242975333894015911 ~2008
38100757013048060560911 ~2007
38100778612286046716711 ~2007
3810102599762020519910 ~2006
3810115079762023015910 ~2006
Home
4.724.182 digits
e-mail
25-04-13