Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2676083363535216672710 ~2005
2676166859535233371910 ~2005
26761863112140949048911 ~2006
2676206303535241260710 ~2005
2676226463535245292710 ~2005
2676270419535254083910 ~2005
26763283931605797035911 ~2006
2676576443535315288710 ~2005
2676600299535320059910 ~2005
2676610019535322003910 ~2005
26766482576423955816911 ~2007
2676753503535350700710 ~2005
2676780719535356143910 ~2005
2676797219535359443910 ~2005
2676847703535369540710 ~2005
2676851279535370255910 ~2005
2676868451535373690310 ~2005
26772554571606353274311 ~2006
2677268411535453682310 ~2005
26772766611606365996711 ~2006
2677313231535462646310 ~2005
26773213731606392823911 ~2006
26773670811606420248711 ~2006
26774392879103293575911 ~2008
2677448843535489768710 ~2005
Exponent Prime Factor Digits Year
2677806203535561240710 ~2005
2677909379535581875910 ~2005
26779594072142367525711 ~2006
26781157011606869420711 ~2006
2678480219535696043910 ~2005
2678552819535710563910 ~2005
2678704403535740880710 ~2005
26787914832678791483111 ~2006
2678799971535759994310 ~2005
26788734974286197595311 ~2007
2678880131535776026310 ~2005
2678933123535786624710 ~2005
2679074759535814951910 ~2005
26791926192679192619111 ~2006
2679249239535849847910 ~2005
2679537779535907555910 ~2005
26797318011607839080711 ~2006
2679749519535949903910 ~2005
26797499211607849952711 ~2006
26800087138040026139111 ~2008
2680098383536019676710 ~2005
2680138691536027738310 ~2005
268018805943419046555912 ~2009
2680234559536046911910 ~2005
26802564712144205176911 ~2006
Exponent Prime Factor Digits Year
2680353551536070710310 ~2005
2680415351536083070310 ~2005
2680461659536092331910 ~2005
2680620599536124119910 ~2005
2680890983536178196710 ~2005
2680948499536189699910 ~2005
2681059943536211988710 ~2005
2681147219536229443910 ~2005
2681236163536247232710 ~2005
2681280011536256002310 ~2005
2681292371536258474310 ~2005
2681546363536309272710 ~2005
26819146331609148779911 ~2006
26819248731609154923911 ~2006
2682023843536404768710 ~2005
2682249359536449871910 ~2005
26823759731609425583911 ~2006
26824933914828488103911 ~2007
2682675371536535074310 ~2005
26826851236438444295311 ~2007
26827038971609622338311 ~2006
2682719423536543884710 ~2005
2682926843536585368710 ~2005
26830182312683018231111 ~2006
2683081211536616242310 ~2005
Exponent Prime Factor Digits Year
26831006472683100647111 ~2006
2683177943536635588710 ~2005
2683381619536676323910 ~2005
2683539671536707934310 ~2005
2683640699536728139910 ~2005
2683715483536743096710 ~2005
2683724759536744951910 ~2005
2683785431536757086310 ~2005
268382913111272082350312 ~2008
2683937099536787419910 ~2005
2683961363536792272710 ~2005
26839614735904715240711 ~2007
2683961543536792308710 ~2005
26840805771610448346311 ~2006
2684093759536818751910 ~2005
2684150039536830007910 ~2005
2684513099536902619910 ~2005
2684546171536909234310 ~2005
2684586011536917202310 ~2005
2684618039536923607910 ~2005
26846690834295470532911 ~2007
2685125939537025187910 ~2005
2685233651537046730310 ~2005
26852654414296424705711 ~2007
2685275591537055118310 ~2005
Home
4.903.097 digits
e-mail
25-07-08