Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
177263674311344875155312 ~2007
1772754299354550859910 ~2003
1772772923354554584710 ~2003
17727882611063672956711 ~2004
17727946034254707047311 ~2006
177284005723756056763912 ~2008
1772863019354572603910 ~2003
1772863439354572687910 ~2003
1772870303354574060710 ~2003
1772915723354583144710 ~2003
1772918951354583790310 ~2003
17729730311772973031111 ~2005
17729895672836783307311 ~2005
1773158903354631780710 ~2003
1773160799354632159910 ~2003
1773209363354641872710 ~2003
17732794211063967652711 ~2004
1773289691354657938310 ~2003
1773299831354659966310 ~2003
17733078011063984680711 ~2004
1773355043354671008710 ~2003
1773373463354674692710 ~2003
17733877015674840643311 ~2006
17734110011064046600711 ~2004
17734234371418738749711 ~2005
Exponent Prime Factor Digits Year
17734440731064066443911 ~2004
17734595211418767616911 ~2005
1773477971354695594310 ~2003
1773567011354713402310 ~2003
1773567611354713522310 ~2003
1773682979354736595910 ~2003
1773720479354744095910 ~2003
17737271391418981711311 ~2005
1773734243354746848710 ~2003
1773908459354781691910 ~2003
1773978191354795638310 ~2003
17740071971064404318311 ~2004
17740226171064413570311 ~2004
17740353113193263559911 ~2006
1774035479354807095910 ~2003
17740455731064427343911 ~2004
17740535511419242840911 ~2005
1774077743354815548710 ~2003
1774086371354817274310 ~2003
1774111259354822251910 ~2003
17741335333903093772711 ~2006
1774209263354841852710 ~2003
17742443091419395447311 ~2005
17742493975322748191111 ~2006
17742712731064562763911 ~2004
Exponent Prime Factor Digits Year
17742723971064563438311 ~2004
17742862813903429818311 ~2006
1774288619354857723910 ~2003
1774338431354867686310 ~2003
17743497711419479816911 ~2005
1774375931354875186310 ~2003
1774453403354890680710 ~2003
17746039131064762347911 ~2004
1774620863354924172710 ~2003
1774626179354925235910 ~2003
17746783191419742655311 ~2005
1774717019354943403910 ~2003
1774725983354945196710 ~2003
1774804523354960904710 ~2003
1774821551354964310310 ~2003
1774846823354969364710 ~2003
17749120791419929663311 ~2005
17749314071774931407111 ~2005
1774982591354996518310 ~2003
17749872172484982103911 ~2005
1775103359355020671910 ~2003
1775218619355043723910 ~2003
1775272979355054595910 ~2003
1775386751355077350310 ~2003
1775394251355078850310 ~2003
Exponent Prime Factor Digits Year
1775411531355082306310 ~2003
177562024725568931556912 ~2008
1775705759355141151910 ~2003
1775717123355143424710 ~2003
1775759543355151908710 ~2003
1775841719355168343910 ~2003
1775887331355177466310 ~2003
17760519174262524600911 ~2006
1776082391355216478310 ~2003
1776111803355222360710 ~2003
1776213563355242712710 ~2003
17762176434262922343311 ~2006
17762443331065746599911 ~2004
1776250571355250114310 ~2003
1776262991355252598310 ~2003
1776420011355284002310 ~2003
1776463163355292632710 ~2003
1776523211355304642310 ~2003
17765643591421251487311 ~2005
17766312531065978751911 ~2004
1776730391355346078310 ~2003
1776797579355359515910 ~2003
1776834071355366814310 ~2003
17768407615685890435311 ~2006
1776842219355368443910 ~2003
Home
4.903.097 digits
e-mail
25-07-08