Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
17769381292487713380711 ~2005
1776960551355392110310 ~2003
1776963959355392791910 ~2003
1776993551355398710310 ~2003
1776998183355399636710 ~2003
1777025111355405022310 ~2003
1777077959355415591910 ~2003
17770936492487931108711 ~2005
1777140671355428134310 ~2003
1777143143355428628710 ~2003
17772195171066331710311 ~2004
1777231931355446386310 ~2003
1777340699355468139910 ~2003
17774368731066462123911 ~2004
17775009171422000733711 ~2005
1777781891355556378310 ~2003
17777826071777782607111 ~2005
1777790159355558031910 ~2003
1777816451355563290310 ~2003
1777854863355570972710 ~2003
17778639071777863907111 ~2005
1778015243355603048710 ~2003
17780398671422431893711 ~2005
1778047283355609456710 ~2003
177804817934138525036912 ~2008
Exponent Prime Factor Digits Year
17781038532844966164911 ~2005
1778158463355631692710 ~2003
1778166011355633202310 ~2003
1778245439355649087910 ~2003
1778328899355665779910 ~2003
1778469839355693967910 ~2003
1778475623355695124710 ~2003
1778524211355704842310 ~2003
1778593871355718774310 ~2003
1778609099355721819910 ~2003
17786401732490096242311 ~2005
1778642111355728422310 ~2003
17786799131067207947911 ~2004
17787130372490198251911 ~2005
17787325371422986029711 ~2005
1778763851355752770310 ~2003
1778791559355758311910 ~2003
1778803991355760798310 ~2003
1778847359355769471910 ~2003
1778866031355773206310 ~2003
1778867339355773467910 ~2003
1779069899355813979910 ~2003
17791223571423297885711 ~2005
1779145559355829111910 ~2003
1779164879355832975910 ~2003
Exponent Prime Factor Digits Year
17791801494270032357711 ~2006
1779193919355838783910 ~2003
1779246779355849355910 ~2003
1779270743355854148710 ~2003
1779298739355859747910 ~2003
1779323831355864766310 ~2003
1779335879355867175910 ~2003
1779363863355872772710 ~2003
1779404411355880882310 ~2003
1779436031355887206310 ~2003
1779443903355888780710 ~2003
17794984193203097154311 ~2006
1779537659355907531910 ~2003
17795434971067726098311 ~2004
1779557303355911460710 ~2003
1779595379355919075910 ~2003
1779649559355929911910 ~2003
1779649691355929938310 ~2003
17796625811067797548711 ~2004
17796907071423752565711 ~2005
1779697091355939418310 ~2003
1779787319355957463910 ~2003
17797917711423833416911 ~2005
17798690111779869011111 ~2005
1779935471355987094310 ~2003
Exponent Prime Factor Digits Year
1779959003355991800710 ~2003
17799881171067992870311 ~2004
1780024643356004928710 ~2003
1780030463356006092710 ~2003
17801754431780175443111 ~2005
17801928711424154296911 ~2005
17802377771068142666311 ~2004
17803129311424250344911 ~2005
1780319759356063951910 ~2003
17803324791424265983311 ~2005
1780360811356072162310 ~2003
1780450163356090032710 ~2003
17804772411068286344711 ~2004
1780498019356099603910 ~2003
17805104811424408384911 ~2005
1780571951356114390310 ~2003
17807127771068427666311 ~2004
1780715399356143079910 ~2003
1780754243356150848710 ~2003
17807644812849223169711 ~2005
1780784711356156942310 ~2003
1780787279356157455910 ~2003
1780839839356167967910 ~2003
17808548771068512926311 ~2004
17809030271780903027111 ~2005
Home
4.903.097 digits
e-mail
25-07-08