Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1053636299210727259910 ~2001
10536692711053669271111 ~2003
1053676979210735395910 ~2001
1053682523210736504710 ~2001
1053740819210748163910 ~2001
1053759431210751886310 ~2001
1053780323210756064710 ~2001
1053860579210772115910 ~2001
1053863117632317870310 ~2003
1053886523210777304710 ~2001
1053905603210781120710 ~2001
1053939863210787972710 ~2001
1053969599210793919910 ~2001
1053971459210794291910 ~2001
1053996563210799312710 ~2001
1054028351210805670310 ~2001
1054034843210806968710 ~2001
1054036271210807254310 ~2001
1054058891210811778310 ~2001
1054077317632446390310 ~2003
1054116179210823235910 ~2001
1054121819210824363910 ~2001
1054162463210832492710 ~2001
10542512292319352703911 ~2004
1054277663210855532710 ~2001
Exponent Prime Factor Digits Year
10543080671686892907311 ~2004
1054384321632630592710 ~2003
1054395011843516008910 ~2003
1054403891210880778310 ~2001
1054442423210888484710 ~2001
10544992331687198772911 ~2004
10545050591054505059111 ~2003
1054505521632703312710 ~2003
1054510679210902135910 ~2001
1054515659210903131910 ~2001
10545311292319968483911 ~2004
1054616039210923207910 ~2001
1054619543210923908710 ~2001
1054623539210924707910 ~2001
1054639717632783830310 ~2003
1054679819210935963910 ~2001
1054680197632808118310 ~2003
10546984391054698439111 ~2003
1054705601632823360710 ~2003
10547173991054717399111 ~2003
1054719131210943826310 ~2001
1054774991210954998310 ~2001
1054788419210957683910 ~2001
1054829063210965812710 ~2001
1054839839210967967910 ~2001
Exponent Prime Factor Digits Year
1054847099210969419910 ~2001
1054884563210976912710 ~2001
1054898699210979739910 ~2001
1054901591210980318310 ~2001
1054953143210990628710 ~2001
1055069231211013846310 ~2001
1055088851211017770310 ~2001
1055103551211020710310 ~2001
1055111279211022255910 ~2001
10551473514431618874311 ~2005
1055186941633112164710 ~2003
1055200571211040114310 ~2001
1055212643211042528710 ~2001
1055227931844182344910 ~2003
1055240003211048000710 ~2001
1055294651211058930310 ~2001
1055327723211065544710 ~2001
1055345591211069118310 ~2001
1055352209844281767310 ~2003
1055394503211078900710 ~2001
1055424143211084828710 ~2001
10554255135699297770311 ~2005
1055442743211088548710 ~2001
1055478863211095772710 ~2001
1055481671211096334310 ~2001
Exponent Prime Factor Digits Year
1055521583211104316710 ~2001
1055523323211104664710 ~2001
10555564871900001676711 ~2004
1055583719211116743910 ~2001
1055636363211127272710 ~2001
1055668093633400855910 ~2003
1055681303211136260710 ~2001
1055685551211137110310 ~2001
1055696123211139224710 ~2001
1055733083211146616710 ~2001
10557423671055742367111 ~2003
1055811719211162343910 ~2001
1055830439211166087910 ~2001
1055859601633515760710 ~2003
1055881643211176328710 ~2001
1055893717633536230310 ~2003
1055894639211178927910 ~2001
1055900159211180031910 ~2001
1055922239211184447910 ~2001
1055931011211186202310 ~2001
1055957999211191599910 ~2001
1055970911211194182310 ~2001
1055984339211196867910 ~2001
1056077257633646354310 ~2003
10560968591900974346311 ~2004
Home
5.157.210 digits
e-mail
25-11-02