Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2404704479480940895910 ~2004
2404781831480956366310 ~2004
24047964171923837133711 ~2006
24048439931442906395911 ~2005
24049290192404929019111 ~2006
2404938551480987710310 ~2004
2404950683480990136710 ~2004
2404978643480995728710 ~2004
2405035991481007198310 ~2004
2405206943481041388710 ~2004
2405253239481050647910 ~2004
2405434799481086959910 ~2004
2405472983481094596710 ~2004
2405479343481095868710 ~2004
2405722103481144420710 ~2004
24057566533849210644911 ~2006
24057586611924606928911 ~2006
2406001439481200287910 ~2004
2406022379481204475910 ~2004
2406074903481214980710 ~2004
24061169533849787124911 ~2006
2406194663481238932710 ~2004
24062094531443725671911 ~2005
24063719173850195067311 ~2006
24064186611925134928911 ~2006
Exponent Prime Factor Digits Year
24064323377219297011111 ~2007
2406478499481295699910 ~2004
2406499163481299832710 ~2004
2406539339481307867910 ~2004
2406573899481314779910 ~2004
2406674579481334915910 ~2004
2406796019481359203910 ~2004
2406812879481362575910 ~2004
24068818331444129099911 ~2005
2407020659481404131910 ~2004
24070779411444246764711 ~2005
2407197323481439464710 ~2004
2407226303481445260710 ~2004
2407336583481467316710 ~2004
24073741733370323842311 ~2006
2407417679481483535910 ~2004
24074308131444458487911 ~2005
2407599983481519996710 ~2004
2407622939481524587910 ~2004
2407691003481538200710 ~2004
2407804439481560887910 ~2004
24078469813852555169711 ~2006
2407883399481576679910 ~2004
24079518792407951879111 ~2006
2408104823481620964710 ~2004
Exponent Prime Factor Digits Year
2408176643481635328710 ~2004
24082770432408277043111 ~2006
2408295731481659146310 ~2004
24083878874335098196711 ~2007
24083950131445037007911 ~2005
240848382139980831428712 ~2009
2408626163481725232710 ~2004
2408688671481737734310 ~2004
24087428811445245728711 ~2005
24087542511927003400911 ~2006
2408996939481799387910 ~2004
24090039731445402383911 ~2005
2409045011481809002310 ~2004
24091035111927282808911 ~2006
2409117731481823546310 ~2004
24091399611927311968911 ~2006
2409346031481869206310 ~2004
2409386579481877315910 ~2004
24094565091927565207311 ~2006
2409460871481892174310 ~2004
2409506051481901210310 ~2004
2409582671481916534310 ~2004
24095840691927667255311 ~2006
24095841013855334561711 ~2006
24096337632409633763111 ~2006
Exponent Prime Factor Digits Year
2409639503481927900710 ~2004
2409705731481941146310 ~2004
240977164915422538553712 ~2008
2409800111481960022310 ~2004
2409908999481981799910 ~2004
24100084931446005095911 ~2005
24100130691928010455311 ~2006
2410057739482011547910 ~2004
2410074119482014823910 ~2004
24100845131446050707911 ~2005
2410184723482036944710 ~2004
2410426019482085203910 ~2004
2410462391482092478310 ~2004
2410520303482104060710 ~2004
2410642691482128538310 ~2004
24106502713857040433711 ~2006
24106937413857109985711 ~2006
2410729703482145940710 ~2004
2410777151482155430310 ~2004
24107995571446479734311 ~2005
2410881023482176204710 ~2004
24111007611446660456711 ~2005
24111258373857801339311 ~2006
2411192279482238455910 ~2004
2411246759482249351910 ~2004
Home
4.724.182 digits
e-mail
25-04-13