Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1745991323349198264710 ~2003
17460430371047625822311 ~2004
1746056759349211351910 ~2003
1746088559349217711910 ~2003
1746109511349221902310 ~2003
1746115043349223008710 ~2003
1746206699349241339910 ~2003
1746208823349241764710 ~2003
1746223079349244615910 ~2003
17462346713143222407911 ~2006
1746240911349248182310 ~2003
1746275159349255031910 ~2003
17463079873143354376711 ~2006
1746317819349263563910 ~2003
17463433211047805992711 ~2004
1746536663349307332710 ~2003
17465591171047935470311 ~2004
1746592811349318562310 ~2003
1746592943349318588710 ~2003
1746602471349320494310 ~2003
17466070071397285605711 ~2005
1746762851349352570310 ~2003
1746775571349355114310 ~2003
1746805583349361116710 ~2003
17469221831746922183111 ~2005
Exponent Prime Factor Digits Year
1746934859349386971910 ~2003
17469455811397556464911 ~2005
1747021079349404215910 ~2003
17470523571397641885711 ~2005
17471834571048310074311 ~2004
1747204559349440911910 ~2003
1747244699349448939910 ~2003
1747286111349457222310 ~2003
1747334279349466855910 ~2003
1747416623349483324710 ~2003
1747419419349483883910 ~2003
1747556411349511282310 ~2003
1747599839349519967910 ~2003
1747695419349539083910 ~2003
17477074492446790428711 ~2005
1747773803349554760710 ~2003
17477984331048679059911 ~2004
1747886279349577255910 ~2003
17479691171048781470311 ~2004
17479809371048788562311 ~2004
17480421432796867428911 ~2005
174805072919578168164912 ~2007
17481813771398545101711 ~2005
1748222519349644503910 ~2003
17483035511748303551111 ~2005
Exponent Prime Factor Digits Year
1748417483349683496710 ~2003
1748433623349686724710 ~2003
1748446571349689314310 ~2003
1748464871349692974310 ~2003
1748468219349693643910 ~2003
1748479259349695851910 ~2003
1748543171349708634310 ~2003
1748547959349709591910 ~2003
17485596411049135784711 ~2004
1748587931349717586310 ~2003
1748602283349720456710 ~2003
1748606003349721200710 ~2003
1748612891349722578310 ~2003
17486206331049172379911 ~2004
1748630171349726034310 ~2003
174866846336722037723112 ~2008
1748798039349759607910 ~2003
17488309071399064725711 ~2005
17489040131049342407911 ~2004
17489228413847630250311 ~2006
1748928323349785664710 ~2003
1749092363349818472710 ~2003
1749108143349821628710 ~2003
17491797371049507842311 ~2004
17492643591399411487311 ~2005
Exponent Prime Factor Digits Year
17493445874198427008911 ~2006
1749387539349877507910 ~2003
17494011194198562685711 ~2006
174948850912246419563112 ~2007
1749511559349902311910 ~2003
1749516623349903324710 ~2003
17495337432799253988911 ~2005
1749598439349919687910 ~2003
1749600623349920124710 ~2003
1749697619349939523910 ~2003
1749737399349947479910 ~2003
1749737579349947515910 ~2003
1749771539349954307910 ~2003
17497941971049876518311 ~2004
17498578811049914728711 ~2004
17499022011049941320711 ~2004
1750010939350002187910 ~2003
1750173083350034616710 ~2003
17502108731050126523911 ~2004
1750268963350053792710 ~2003
1750299179350059835910 ~2003
1750307651350061530310 ~2003
1750311071350062214310 ~2003
17504064591400325167311 ~2005
1750513343350102668710 ~2003
Home
4.724.182 digits
e-mail
25-04-13