Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1750537703350107540710 ~2003
1750669631350133926310 ~2003
1750762511350152502310 ~2003
17508121011050487260711 ~2004
1750857263350171452710 ~2003
1750870631350174126310 ~2003
1751077019350215403910 ~2003
17511222771050673366311 ~2004
1751309471350261894310 ~2003
1751370143350274028710 ~2003
17513846711751384671111 ~2005
17513900571050834034311 ~2004
17514452873152601516711 ~2006
1751478203350295640710 ~2003
17515992371050959542311 ~2004
1751613179350322635910 ~2003
1751791403350358280710 ~2003
1751928911350385782310 ~2003
1751971691350394338310 ~2003
17520000531051200031911 ~2004
17521041292452945780711 ~2005
1752117791350423558310 ~2003
1752131159350426231910 ~2003
1752141119350428223910 ~2003
1752152819350430563910 ~2003
Exponent Prime Factor Digits Year
1752227579350445515910 ~2003
17522491332803598612911 ~2005
1752322499350464499910 ~2003
1752379199350475839910 ~2003
1752412223350482444710 ~2003
17524191131051451467911 ~2004
1752461723350492344710 ~2003
1752587423350517484710 ~2003
1752662519350532503910 ~2003
1752772019350554403910 ~2003
17528169171051690150311 ~2004
17528804271402304341711 ~2005
1752934919350586983910 ~2003
1753083803350616760710 ~2003
1753144691350628938310 ~2003
1753164683350632936710 ~2003
17532742971051964578311 ~2004
1753293299350658659910 ~2003
17533046691402643735311 ~2005
1753328579350665715910 ~2003
1753371419350674283910 ~2003
1753419971350683994310 ~2003
17534358771052061526311 ~2004
17534379011052062740711 ~2004
17534688772454856427911 ~2005
Exponent Prime Factor Digits Year
1753476299350695259910 ~2003
17534873571052092414311 ~2004
1753530371350706074310 ~2003
1753548119350709623910 ~2003
17535486611052129196711 ~2004
1753580303350716060710 ~2003
1753588883350717776710 ~2003
17537002191402960175311 ~2005
1753735559350747111910 ~2003
1753785023350757004710 ~2003
17538062271403044981711 ~2005
17538346015261503803111 ~2006
17540327334209678559311 ~2006
1754038283350807656710 ~2003
1754045339350809067910 ~2003
1754111423350822284710 ~2003
17541608171052496490311 ~2004
1754166971350833394310 ~2003
1754227379350845475910 ~2003
17543097371052585842311 ~2004
1754386103350877220710 ~2003
1754392043350878408710 ~2003
17544028994210566957711 ~2006
17544059113157930639911 ~2006
17544813191754481319111 ~2005
Exponent Prime Factor Digits Year
17544947331052696839911 ~2004
1754534003350906800710 ~2003
17545371771403629741711 ~2005
17545449411403635952911 ~2005
17545514575263654371111 ~2006
17545704011052742240711 ~2004
1754589719350917943910 ~2003
1754611571350922314310 ~2003
1754656703350931340710 ~2003
1754663411350932682310 ~2003
17546838711403747096911 ~2005
1754742851350948570310 ~2003
1754760071350952014310 ~2003
1754763539350952707910 ~2003
1754781659350956331910 ~2003
1754832671350966534310 ~2003
17548644671754864467111 ~2005
17548748091403899847311 ~2005
1754923883350984776710 ~2003
1755042431351008486310 ~2003
1755088259351017651910 ~2003
1755134939351026987910 ~2003
1755159803351031960710 ~2003
1755165803351033160710 ~2003
17551808572457253199911 ~2005
Home
4.724.182 digits
e-mail
25-04-13