Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1442360999288472199910 ~2003
1442409359288481871910 ~2003
1442415503288483100710 ~2003
1442447459288489491910 ~2003
1442487131288497426310 ~2003
1442493337865496002310 ~2004
1442550251288510050310 ~2003
1442583071288516614310 ~2003
14426187471154094997711 ~2004
1442654723288530944710 ~2003
1442667059288533411910 ~2003
1442694083288538816710 ~2003
1442740919288548183910 ~2003
1442757383288551476710 ~2003
14427946673462707200911 ~2005
1442824079288564815910 ~2003
1442850917865710550310 ~2004
1442863181865717908710 ~2004
14429051599234593017711 ~2006
1442915497865749298310 ~2004
1442951843288590368710 ~2003
1442969471288593894310 ~2003
1443021473865812883910 ~2004
1443042959288608591910 ~2003
1443051359288610271910 ~2003
Exponent Prime Factor Digits Year
1443091043288618208710 ~2003
1443148799288629759910 ~2003
1443209459288641891910 ~2003
1443213659288642731910 ~2003
1443243779288648755910 ~2003
1443290003288658000710 ~2003
1443365279288673055910 ~2003
1443369131288673826310 ~2003
1443388139288677627910 ~2003
14434018871443401887111 ~2004
1443416003288683200710 ~2003
1443418393866051035910 ~2004
1443490121866094072710 ~2004
1443493871288698774310 ~2003
1443535343288707068710 ~2003
1443594983288718996710 ~2003
1443725483288745096710 ~2003
14438074573465137896911 ~2005
14438200872598876156711 ~2005
1443857153866314291910 ~2004
1443947137866368282310 ~2004
14439727911155178232911 ~2004
14439823392599168210311 ~2005
1444004651288800930310 ~2003
14440047411155203792911 ~2004
Exponent Prime Factor Digits Year
1444074011288814802310 ~2003
1444227923288845584710 ~2003
1444230839288846167910 ~2003
1444242623288848524710 ~2003
1444294079288858815910 ~2003
1444305683288861136710 ~2003
1444330757866598454310 ~2004
1444343291288868658310 ~2003
1444413197866647918310 ~2004
1444496951288899390310 ~2003
1444523891288904778310 ~2003
1444526399288905279910 ~2003
14445390591155631247311 ~2004
1444549871288909974310 ~2003
14445810671444581067111 ~2004
1444592531288918506310 ~2003
14446164892022463084711 ~2005
14446402791155712223311 ~2004
1444696837866818102310 ~2004
14447220111155777608911 ~2004
1444830251288966050310 ~2003
1445018339289003667910 ~2003
1445092151289018430310 ~2003
1445094251289018850310 ~2003
1445112719289022543910 ~2003
Exponent Prime Factor Digits Year
1445192123289038424710 ~2003
1445193803289038760710 ~2003
14452007511156160600911 ~2004
1445285519289057103910 ~2003
1445333699289066739910 ~2003
14454015471156321237711 ~2004
14454570071445457007111 ~2004
1445461331289092266310 ~2003
1445484311289096862310 ~2003
1445489701867293820710 ~2004
1445548463289109692710 ~2003
14455501871445550187111 ~2004
1445559737867335842310 ~2004
1445614343289122868710 ~2003
1445672681867403608710 ~2004
1445697899289139579910 ~2003
1445783039289156607910 ~2003
1445900231289180046310 ~2003
14459080272313452843311 ~2005
1445916443289183288710 ~2003
1446012779289202555910 ~2003
1446032543289206508710 ~2003
1446083459289216691910 ~2003
1446102683289220536710 ~2003
1446121151289224230310 ~2003
Home
4.903.097 digits
e-mail
25-07-08