Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
1741513859348302771910 ~2003
1741519583348303916710 ~2003
1741538003348307600710 ~2003
1741545959348309191910 ~2003
1741547399348309479910 ~2003
17415475931044928555911 ~2004
1741652543348330508710 ~2003
1741693379348338675910 ~2003
1741718243348343648710 ~2003
1741728743348345748710 ~2003
1741750799348350159910 ~2003
1741763879348352775910 ~2003
17418828371045129702311 ~2004
17419661811045179708711 ~2004
1742035331348407066310 ~2003
1742092559348418511910 ~2003
1742151791348430358310 ~2003
1742161511348432302310 ~2003
17421855411045311324711 ~2004
17422272371045336342311 ~2004
1742362931348472586310 ~2003
1742420063348484012710 ~2003
1742422163348484432710 ~2003
1742467439348493487910 ~2003
1742500271348500054310 ~2003
Exponent Prime Factor Digits Year
1742570003348514000710 ~2003
1742606699348521339910 ~2003
17426885511394150840911 ~2005
1742717783348543556710 ~2003
17427687011045661220711 ~2004
17428717011394297360911 ~2005
1742903951348580790310 ~2003
17430594011045835640711 ~2004
1743064439348612887910 ~2003
1743156011348631202310 ~2003
1743162671348632534310 ~2003
17432017311394561384911 ~2005
1743207491348641498310 ~2003
1743299843348659968710 ~2003
1743386783348677356710 ~2003
1743407423348681484710 ~2003
1743439619348687923910 ~2003
17434494711394759576911 ~2005
1743480911348696182310 ~2003
174350527719178558047112 ~2007
1743512411348702482310 ~2003
1743527171348705434310 ~2003
1743577271348715454310 ~2003
1743608123348721624710 ~2003
1743659999348731999910 ~2003
Exponent Prime Factor Digits Year
1743752579348750515910 ~2003
1743840011348768002310 ~2003
17438674314534055320711 ~2006
1743899519348779903910 ~2003
1743968591348793718310 ~2003
17441519931046491195911 ~2004
1744198139348839627910 ~2003
174426098913605235714312 ~2007
17442620871395409669711 ~2005
1744292519348858503910 ~2003
17443477913139826023911 ~2006
1744389551348877910310 ~2003
1744406291348881258310 ~2003
1744458239348891647910 ~2003
1744466063348893212710 ~2003
1744518371348903674310 ~2003
1744559759348911951910 ~2003
17446831331046809879911 ~2004
1744700999348940199910 ~2003
17447665331046859919911 ~2004
1744823603348964720710 ~2003
17448418211046905092711 ~2004
17449257834187821879311 ~2006
1744928351348985670310 ~2003
1744979063348995812710 ~2003
Exponent Prime Factor Digits Year
1745006723349001344710 ~2003
1745039951349007990310 ~2003
17450599693839131931911 ~2006
1745107379349021475910 ~2003
1745233943349046788710 ~2003
1745237183349047436710 ~2003
1745391311349078262310 ~2003
1745392139349078427910 ~2003
1745412863349082572710 ~2003
17454226211047253572711 ~2004
1745438939349087787910 ~2003
1745510531349102106310 ~2003
1745518559349103711910 ~2003
17455615011047336900711 ~2004
1745619251349123850310 ~2003
1745635511349127102310 ~2003
1745641211349128242310 ~2003
1745652851349130570310 ~2003
1745653583349130716710 ~2003
17456715611047402936711 ~2004
17457055011396564400911 ~2005
1745739263349147852710 ~2003
17458265871396661269711 ~2005
1745882531349176506310 ~2003
1745973191349194638310 ~2003
Home
4.724.182 digits
e-mail
25-04-13