Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
512095583102419116710 ~1999
512096171102419234310 ~1999
512110063512110063110 ~2001
512119763102423952710 ~1999
512128703102425740710 ~1999
512144573307286743910 ~2000
512159287512159287110 ~2001
512162351102432470310 ~1999
512199113307319467910 ~2000
512217653307330591910 ~2000
512223521307334112710 ~2000
512232319922018174310 ~2001
512251823102450364710 ~1999
512269139102453827910 ~1999
512270111409816088910 ~2000
512273483102454696710 ~1999
512273831102454766310 ~1999
512278043102455608710 ~1999
512287961409830368910 ~2000
512290561307374336710 ~2000
512316317307389790310 ~2000
512317163102463432710 ~1999
512331959102466391910 ~1999
512340431102468086310 ~1999
512378543102475708710 ~1999
Exponent Prime Factor Digits Year
512384423102476884710 ~1999
512397617307438570310 ~2000
512413091102482618310 ~1999
512419643102483928710 ~1999
512423039102484607910 ~1999
512429663102485932710 ~1999
512445743102489148710 ~1999
512452859102490571910 ~1999
512462903102492580710 ~1999
512475143102495028710 ~1999
512478313307486987910 ~2000
512493743102498748710 ~1999
512497343102499468710 ~1999
512512823102502564710 ~1999
512513377307508026310 ~2000
512517359102503471910 ~1999
512524861307514916710 ~2000
512554943102510988710 ~1999
512572793307543675910 ~2000
512577881410062304910 ~2000
512585459102517091910 ~1999
512622083102524416710 ~1999
512626253307575751910 ~2000
512664863102532972710 ~1999
512665403102533080710 ~1999
Exponent Prime Factor Digits Year
512698993307619395910 ~2000
512699123102539824710 ~1999
512705441307623264710 ~2000
512708957410167165710 ~2000
512715023102543004710 ~1999
512719019102543803910 ~1999
512721383102544276710 ~1999
5127221091948344014311 ~2002
512743691102548738310 ~1999
512763539102552707910 ~1999
512764859102552971910 ~1999
512770259102554051910 ~1999
512782637307669582310 ~2000
512788043102557608710 ~1999
512811983102562396710 ~1999
512818391410254712910 ~2000
512842763102568552710 ~1999
512852831102570566310 ~1999
5128537512153985754311 ~2002
512857451102571490310 ~1999
512893763102578752710 ~1999
512941063512941063110 ~2001
512965283102593056710 ~1999
512983193718176470310 ~2001
513002543102600508710 ~1999
Exponent Prime Factor Digits Year
513036323102607264710 ~1999
513057179102611435910 ~1999
513091559410473247310 ~2000
513094073307856443910 ~2000
513096757307858054310 ~2000
513109559102621911910 ~1999
513109871102621974310 ~1999
513111373307866823910 ~2000
513129341307877604710 ~2000
513143303102628660710 ~1999
513172433307903459910 ~2000
513175511410540408910 ~2000
513187901410550320910 ~2000
5131888913387046680711 ~2003
513201959102640391910 ~1999
513212963102642592710 ~1999
513220139102644027910 ~1999
513253271102650654310 ~1999
513264443102652888710 ~1999
513264623102652924710 ~1999
513278273307966963910 ~2000
513315563102663112710 ~1999
5133456733696088845711 ~2003
513372323102674464710 ~1999
513373079102674615910 ~1999
Home
4.903.097 digits
e-mail
25-07-08