Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
511059119102211823910 ~1999
511061891102212378310 ~1999
511061951102212390310 ~1999
511064797306638878310 ~2000
5110675091124348519911 ~2002
511079909715511872710 ~2001
511080071102216014310 ~1999
511088243102217648710 ~1999
511097597306658558310 ~2000
511099811102219962310 ~1999
511117793306670675910 ~2000
511123559102224711910 ~1999
511159993817855988910 ~2001
5111695571226806936911 ~2002
511170917306702550310 ~2000
511193497306716098310 ~2000
511199309408959447310 ~2000
511199963102239992710 ~1999
511222199102244439910 ~1999
51122383713496309296912 ~2004
511224419102244883910 ~1999
511243021306745812710 ~2000
511256441306753864710 ~2000
511266923102253384710 ~1999
511278563102255712710 ~1999
Exponent Prime Factor Digits Year
511279031102255806310 ~1999
511280723102256144710 ~1999
511286879102257375910 ~1999
511293061306775836710 ~2000
511296323102259264710 ~1999
511304879102260975910 ~1999
511320899102264179910 ~1999
511330217306798130310 ~2000
511331273306798763910 ~2000
511332779102266555910 ~1999
511332917409066333710 ~2000
5113478771227234904911 ~2002
511352651102270530310 ~1999
511356431102271286310 ~1999
511359341409087472910 ~2000
511367113306820267910 ~2000
511373003102274600710 ~1999
511381823102276364710 ~1999
511382951102276590310 ~1999
511392179102278435910 ~1999
511406617818250587310 ~2001
511413977306848386310 ~2000
511434043818294468910 ~2001
511439459102287891910 ~1999
511445243102289048710 ~1999
Exponent Prime Factor Digits Year
5114536331125197992711 ~2002
511479659102295931910 ~1999
511484849409187879310 ~2000
511488959102297791910 ~1999
511494719102298943910 ~1999
511508219102301643910 ~1999
511511999102302399910 ~1999
511536671102307334310 ~1999
511540643102308128710 ~1999
511552883102310576710 ~1999
511552997306931798310 ~2000
511583651102316730310 ~1999
511599383102319876710 ~1999
511599611102319922310 ~1999
511608793306965275910 ~2000
511619639102323927910 ~1999
511626383102325276710 ~1999
511648523102329704710 ~1999
511661831102332366310 ~1999
511667063102333412710 ~1999
511695323102339064710 ~1999
511719071921094327910 ~2001
511736999102347399910 ~1999
511738043102347608710 ~1999
5117504031228200967311 ~2002
Exponent Prime Factor Digits Year
511768091102353618310 ~1999
511769231102353846310 ~1999
511803113307081867910 ~2000
511809587409447669710 ~2000
511823219102364643910 ~1999
511850771102370154310 ~1999
511865287511865287110 ~2001
5118692511330860052711 ~2002
511872071102374414310 ~1999
511886077307131646310 ~2000
511906897307144138310 ~2000
511913107511913107110 ~2001
511919411409535528910 ~2000
511951709409561367310 ~2000
511970531102394106310 ~1999
511992599102398519910 ~1999
511997771102399554310 ~1999
512006039102401207910 ~1999
512033243102406648710 ~1999
512035613307221367910 ~2000
512056619102411323910 ~1999
512056763102411352710 ~1999
512067151921720871910 ~2001
512077931102415586310 ~1999
512080931102416186310 ~1999
Home
4.903.097 digits
e-mail
25-07-08