Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
715976887715976887110 ~2002
715985717429591430310 ~2001
716011883143202376710 ~2000
716019299143203859910 ~2000
716021459143204291910 ~2000
716036317429621790310 ~2001
716057291143211458310 ~2000
716059763143211952710 ~2000
7160621631861761623911 ~2003
716097983143219596710 ~2000
716098501429659100710 ~2001
716113571572890856910 ~2002
716204939143240987910 ~2000
7162060091718894421711 ~2003
716214371143242874310 ~2000
7162282971002719615911 ~2002
716264303143252860710 ~2000
716382059143276411910 ~2000
716386421573109136910 ~2002
7163898112292447395311 ~2003
716421479143284295910 ~2000
716473301429883980710 ~2001
716483699143296739910 ~2000
716494703143298940710 ~2000
716531423143306284710 ~2000
Exponent Prime Factor Digits Year
716551271143310254310 ~2000
716552183143310436710 ~2000
716559719143311943910 ~2000
716588291143317658310 ~2000
716592673429955603910 ~2001
716612851716612851110 ~2002
716627963143325592710 ~2000
716661563143332312710 ~2000
716664731143332946310 ~2000
716684723143336944710 ~2000
716726051143345210310 ~2000
716732519143346503910 ~2000
716752451143350490310 ~2000
716764883143352976710 ~2000
716785457430071274310 ~2001
716830319143366063910 ~2000
7168317293440792299311 ~2004
716835221430101132710 ~2001
716876291143375258310 ~2000
716893511143378702310 ~2000
716998823143399764710 ~2000
717039503143407900710 ~2000
717092303143418460710 ~2000
717106697430264018310 ~2001
717172997430303798310 ~2001
Exponent Prime Factor Digits Year
717182171143436434310 ~2000
717202991143440598310 ~2000
717233063143446612710 ~2000
717248771143449754310 ~2000
717255631717255631110 ~2002
717262957430357774310 ~2001
717274991143454998310 ~2000
717316163143463232710 ~2000
717339971143467994310 ~2000
717347003143469400710 ~2000
717349271143469854310 ~2000
717352319143470463910 ~2000
717376823143475364710 ~2000
717401341430440804710 ~2001
717425399143485079910 ~2000
717435923143487184710 ~2000
717444053430466431910 ~2001
717472859143494571910 ~2000
717481139143496227910 ~2000
717535823143507164710 ~2000
7175380271291568448711 ~2002
717560699143512139910 ~2000
717561913430537147910 ~2001
717575843143515168710 ~2000
7175811591291646086311 ~2002
Exponent Prime Factor Digits Year
7175962331578711712711 ~2003
717600677430560406310 ~2001
717601991143520398310 ~2000
717605939143521187910 ~2000
717612359143522471910 ~2000
717613937430568362310 ~2001
717636611143527322310 ~2000
717676387717676387110 ~2002
717687599143537519910 ~2000
717691259143538251910 ~2000
717740819143548163910 ~2000
7177853712871141484111 ~2003
717795899143559179910 ~2000
7178165531148506484911 ~2002
7178419911292115583911 ~2002
717859619143571923910 ~2000
717867719143573543910 ~2000
717921311143584262310 ~2000
7179265271723023664911 ~2003
717926981430756188710 ~2001
717953003143590600710 ~2000
718022699143604539910 ~2000
718045403143609080710 ~2000
718055483143611096710 ~2000
718064111143612822310 ~2000
Home
4.724.182 digits
e-mail
25-04-13