Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
640391033384234619910 ~2001
640404503128080900710 ~2000
640407011128081402310 ~2000
640430369512344295310 ~2001
640432649512346119310 ~2001
640445423128089084710 ~2000
640454123128090824710 ~2000
64046230744704269028712 ~2006
640465537384279322310 ~2001
640466951128093390310 ~2000
640475861384285516710 ~2001
640491023128098204710 ~2000
640497007640497007110 ~2001
640503179128100635910 ~2000
640509547640509547110 ~2001
640520053384312031910 ~2001
640534799128106959910 ~2000
640554311512443448910 ~2001
640571663128114332710 ~2000
640612991128122598310 ~2000
640613111128122622310 ~2000
640618661384371196710 ~2001
640631819512505455310 ~2001
640638023128127604710 ~2000
640643651128128730310 ~2000
Exponent Prime Factor Digits Year
640710683128142136710 ~2000
640749899128149979910 ~2000
6407626671537830400911 ~2002
640771583128154316710 ~2000
640793603128158720710 ~2000
6408127191153462894311 ~2002
640820819128164163910 ~2000
640821197384492718310 ~2001
640827073384496243910 ~2001
640847243128169448710 ~2000
640855643128171128710 ~2000
640869191128173838310 ~2000
640945273384567163910 ~2001
6409653591153737646311 ~2002
640967111128193422310 ~2000
640983659128196731910 ~2000
640986191128197238310 ~2000
641006939128201387910 ~2000
641016217384609730310 ~2001
641029211128205842310 ~2000
641039699128207939910 ~2000
641053043128210608710 ~2000
641053499128210699910 ~2000
641072171128214434310 ~2000
6410999511153979911911 ~2002
Exponent Prime Factor Digits Year
641108291128221658310 ~2000
641144411128228882310 ~2000
6411524414616297575311 ~2004
641182343128236468710 ~2000
641193251128238650310 ~2000
641235383128247076710 ~2000
641238659128247731910 ~2000
641239883128247976710 ~2000
641249699128249939910 ~2000
641262371128252474310 ~2000
641289491513031592910 ~2001
641304299128260859910 ~2000
641307071128261414310 ~2000
641333939128266787910 ~2000
641338499128267699910 ~2000
641347799128269559910 ~2000
6413497211026159553711 ~2002
6413652671154457480711 ~2002
641397023128279404710 ~2000
641406281384843768710 ~2001
641425439513140351310 ~2001
641451491128290298310 ~2000
641470079128294015910 ~2000
641474819128294963910 ~2000
641510483128302096710 ~2000
Exponent Prime Factor Digits Year
641520923128304184710 ~2000
641529683128305936710 ~2000
641596273384957763910 ~2001
641620493384972295910 ~2001
641635619128327123910 ~2000
641644571128328914310 ~2000
641645633384987379910 ~2001
641675759128335151910 ~2000
641677703128335540710 ~2000
641695091128339018310 ~2000
641705891128341178310 ~2000
641742323128348464710 ~2000
6417970811411953578311 ~2002
641818237385090942310 ~2001
641828471128365694310 ~2000
641839151128367830310 ~2000
6418565213594396517711 ~2003
641880023128376004710 ~2000
641906159128381231910 ~2000
641912291128382458310 ~2000
641960939128392187910 ~2000
642033341385220004710 ~2001
642046763128409352710 ~2000
642049019513639215310 ~2001
642051551128410310310 ~2000
Home
4.724.182 digits
e-mail
25-04-13