Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
611152319122230463910 ~2000
611154521488923616910 ~2001
611170523122234104710 ~2000
611174519122234903910 ~2000
6111905333300428878311 ~2003
611196203122239240710 ~2000
611204579122240915910 ~2000
611220191122244038310 ~2000
611222653977956244910 ~2002
611235563122247112710 ~2000
611244659122248931910 ~2000
611262959122252591910 ~2000
611269679122253935910 ~2000
611270771122254154310 ~2000
611273413366764047910 ~2001
611276579122255315910 ~2000
611296979122259395910 ~2000
611306231122261246310 ~2000
611316059122263211910 ~2000
611323319122264663910 ~2000
611334791122266958310 ~2000
611336591122267318310 ~2000
611358263122271652710 ~2000
611387951122277590310 ~2000
611395079122279015910 ~2000
Exponent Prime Factor Digits Year
611418551122283710310 ~2000
611419703122283940710 ~2000
6114199612323395851911 ~2003
611424419122284883910 ~2000
611430779122286155910 ~2000
611432831122286566310 ~2000
611461183978337892910 ~2002
611483813366890287910 ~2001
611497499122299499910 ~2000
611501993366901195910 ~2001
611508431122301686310 ~2000
611510701366906420710 ~2001
611517143122303428710 ~2000
611528759122305751910 ~2000
611539783611539783110 ~2001
611540003122308000710 ~2000
611549111122309822310 ~2000
611596031122319206310 ~2000
611610599122322119910 ~2000
611630543122326108710 ~2000
611640437366984262310 ~2001
611646419122329283910 ~2000
611675423122335084710 ~2000
611677397489341917710 ~2001
611708651122341730310 ~2000
Exponent Prime Factor Digits Year
611720183122344036710 ~2000
611737081367042248710 ~2001
611749679122349935910 ~2000
611752763122350552710 ~2000
611770091122354018310 ~2000
611771903122354380710 ~2000
611811097367086658310 ~2001
611821997367093198310 ~2001
611828801367097280710 ~2001
611835179122367035910 ~2000
611896081367137648710 ~2001
6119189771835756931111 ~2002
611941307489553045710 ~2001
611943119122388623910 ~2000
611946431122389286310 ~2000
611955083122391016710 ~2000
611962829856747960710 ~2002
611963123122392624710 ~2000
611972639122394527910 ~2000
611974091122394818310 ~2000
611975411122395082310 ~2000
611983763122396752710 ~2000
612022199489617759310 ~2001
612043031122408606310 ~2000
61204778917626976323312 ~2005
Exponent Prime Factor Digits Year
612064919122412983910 ~2000
612102713367261627910 ~2001
612106499122421299910 ~2000
612130853856983194310 ~2002
612152351122430470310 ~2000
612168863122433772710 ~2000
612195443122439088710 ~2000
612205171612205171110 ~2001
612212411122442482310 ~2000
612214919122442983910 ~2000
612216907612216907110 ~2001
612229043122445808710 ~2000
612230903122446180710 ~2000
612252071122450414310 ~2000
612258191122451638310 ~2000
612268463122453692710 ~2000
612274427489819541710 ~2001
612274777367364866310 ~2001
612287341979659745710 ~2002
612314063122462812710 ~2000
612319727489855781710 ~2001
612327731122465546310 ~2000
612337391122467478310 ~2000
612350699122470139910 ~2000
612369731122473946310 ~2000
Home
4.724.182 digits
e-mail
25-04-13