Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
609597431121919486310 ~2000
609638723121927744710 ~2000
609645779121929155910 ~2000
609657071121931414310 ~2000
6096710031463210407311 ~2002
609674951121934990310 ~2000
609675659121935131910 ~2000
609677303121935460710 ~2000
609678841365807304710 ~2001
609697139121939427910 ~2000
609706943121941388710 ~2000
609710723121942144710 ~2000
609742223121948444710 ~2000
6097453331341439732711 ~2002
609751463121950292710 ~2000
609762899121952579910 ~2000
609803437365882062310 ~2001
609817127487853701710 ~2001
609818039121963607910 ~2000
609823559121964711910 ~2000
609861803121972360710 ~2000
609866039121973207910 ~2000
609867397365920438310 ~2001
609887857365932714310 ~2001
609958757365975254310 ~2001
Exponent Prime Factor Digits Year
609966299121993259910 ~2000
609980879121996175910 ~2000
609987491121997498310 ~2000
609989951121997990310 ~2000
609991451121998290310 ~2000
610021151122004230310 ~2000
610023383122004676710 ~2000
610028123122005624710 ~2000
6100409871464098368911 ~2002
610092619610092619110 ~2001
610128719122025743910 ~2000
610137023122027404710 ~2000
610140983122028196710 ~2000
610141439122028287910 ~2000
610164239122032847910 ~2000
610182841366109704710 ~2001
610224011122044802310 ~2000
610232099122046419910 ~2000
6102712611830813783111 ~2002
610310279122062055910 ~2000
610315859122063171910 ~2000
610356479488285183310 ~2001
610362911122072582310 ~2000
610367573366220543910 ~2001
610395563122079112710 ~2000
Exponent Prime Factor Digits Year
610424063122084812710 ~2000
610434791122086958310 ~2000
610453439122090687910 ~2000
610455299122091059910 ~2000
610458683122091736710 ~2000
610463827610463827110 ~2001
610485671122097134310 ~2000
610496053366297631910 ~2001
610555223122111044710 ~2000
610556651122111330310 ~2000
610570619122114123910 ~2000
610583999122116799910 ~2000
610586843122117368710 ~2000
610597817366358690310 ~2001
610647097366388258310 ~2001
610669931122133986310 ~2000
610670843122134168710 ~2000
610673159122134631910 ~2000
610686599122137319910 ~2000
610710671122142134310 ~2000
610711163122142232710 ~2000
610712243122142448710 ~2000
610720079122144015910 ~2000
610722023122144404710 ~2000
610727783122145556710 ~2000
Exponent Prime Factor Digits Year
610727951122145590310 ~2000
610734539122146907910 ~2000
610748557366449134310 ~2001
610750697488600557710 ~2001
610785431122157086310 ~2000
610786199122157239910 ~2000
610793483122158696710 ~2000
610806941488645552910 ~2001
610822139122164427910 ~2000
610829743610829743110 ~2001
610832003122166400710 ~2000
610854011122170802310 ~2000
610856063122171212710 ~2000
610858499122171699910 ~2000
610867871122173574310 ~2000
6108748931832624679111 ~2002
610927931122185586310 ~2000
610933931122186786310 ~2000
610964201488771360910 ~2001
610978913366587347910 ~2001
610979783122195956710 ~2000
611067563122213512710 ~2000
611069579122213915910 ~2000
611075099488860079310 ~2001
611080949488864759310 ~2001
Home
4.724.182 digits
e-mail
25-04-13