Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
612424223122484844710 ~2000
612429791122485958310 ~2000
612454343122490868710 ~2000
612458183122491636710 ~2000
612464561367478736710 ~2001
612469397489975517710 ~2001
612481403122496280710 ~2000
612491713979986740910 ~2002
612493439122498687910 ~2000
612497833367498699910 ~2001
612501059490000847310 ~2001
6125047491470011397711 ~2002
6125087231470020935311 ~2002
612511043122502208710 ~2000
61251490114700357624112 ~2005
612542951122508590310 ~2000
612551903122510380710 ~2000
612558587490046869710 ~2001
612594127612594127110 ~2001
612598139122519627910 ~2000
612605639122521127910 ~2000
612608411122521682310 ~2000
612628057980204891310 ~2002
612631441980210305710 ~2002
612661883122532376710 ~2000
Exponent Prime Factor Digits Year
612664427490131541710 ~2001
6126804071470432976911 ~2002
612700981367620588710 ~2001
612751033367650619910 ~2001
612781271122556254310 ~2000
6127993872083517915911 ~2003
612802139122560427910 ~2000
612819143122563828710 ~2000
612825901367695540710 ~2001
612839219122567843910 ~2000
612888629490310903310 ~2001
612888803122577760710 ~2000
612901043122580208710 ~2000
612903097367741858310 ~2001
612914363122582872710 ~2000
612926243122585248710 ~2000
6129303974290512779111 ~2003
612981251122596250310 ~2000
613016639122603327910 ~2000
613017143122603428710 ~2000
613022219122604443910 ~2000
613038383122607676710 ~2000
613055699490444559310 ~2001
613059539122611907910 ~2000
613071607613071607110 ~2001
Exponent Prime Factor Digits Year
613076039122615207910 ~2000
613102519613102519110 ~2001
613120901490496720910 ~2001
613174279613174279110 ~2001
613188071122637614310 ~2000
613196483122639296710 ~2000
6132024415273540992711 ~2004
613211941367927164710 ~2001
613226063122645212710 ~2000
613243613367946167910 ~2001
613261823122652364710 ~2000
613274279122654855910 ~2000
613294859122658971910 ~2000
613299143122659828710 ~2000
613338839490671071310 ~2001
6133736993066868495111 ~2003
613383779122676755910 ~2000
613389713858745598310 ~2002
613411439490729151310 ~2001
613412909858778072710 ~2002
613415963122683192710 ~2000
613418423122683684710 ~2000
613466663122693332710 ~2000
613467539122693507910 ~2000
613508123122701624710 ~2000
Exponent Prime Factor Digits Year
613509119122701823910 ~2000
613513633368108179910 ~2001
613544663122708932710 ~2000
613551527490841221710 ~2001
613578299122715659910 ~2000
613586639122717327910 ~2000
613625141368175084710 ~2001
613637039122727407910 ~2000
613640603122728120710 ~2000
613655639122731127910 ~2000
613662781368197668710 ~2001
613663139122732627910 ~2000
613671143122734228710 ~2000
613692791122738558310 ~2000
613716581368229948710 ~2001
613739459122747891910 ~2000
613756133368253679910 ~2001
613801193368280715910 ~2001
613830071491064056910 ~2001
613870997491096797710 ~2001
6138964431964468617711 ~2003
613920179122784035910 ~2000
613939619122787923910 ~2000
6139415213806437430311 ~2003
613953491122790698310 ~2000
Home
4.724.182 digits
e-mail
25-04-13