Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
540557321324334392710 ~2000
540566363108113272710 ~1999
540566783108113356710 ~1999
540569153756796814310 ~2001
540572471108114494310 ~1999
540622259108124451910 ~1999
540630011108126002310 ~1999
540637703108127540710 ~1999
540637943108127588710 ~1999
540651721865042753710 ~2001
540660097324396058310 ~2000
540664261324398556710 ~2000
540671699108134339910 ~1999
5406895872595310017711 ~2003
540690323108138064710 ~1999
540695279108139055910 ~1999
540699959108139991910 ~1999
540708407432566725710 ~2001
540712391108142478310 ~1999
540732971108146594310 ~1999
540741731108148346310 ~1999
540743561432594848910 ~2001
540750437324450262310 ~2000
540755651108151130310 ~1999
540781463108156292710 ~1999
Exponent Prime Factor Digits Year
540802799108160559910 ~1999
540807937324484762310 ~2000
540841739108168347910 ~1999
540846203108169240710 ~1999
540861481324516888710 ~2000
540861787540861787110 ~2001
540864617324518770310 ~2000
540877279540877279110 ~2001
540885083108177016710 ~1999
540911347540911347110 ~2001
540921911108184382310 ~1999
540922631108184526310 ~1999
540924311108184862310 ~1999
540929243108185848710 ~1999
540938831108187766310 ~1999
540958261324574956710 ~2000
540958811108191762310 ~1999
540960131108192026310 ~1999
540964559108192911910 ~1999
541009583108201916710 ~1999
541017637324610582310 ~2000
541022837757431971910 ~2001
541023911108204782310 ~1999
541043543108208708710 ~1999
541058891108211778310 ~1999
Exponent Prime Factor Digits Year
541060661432848528910 ~2001
5410627131731400681711 ~2002
541086809432869447310 ~2001
541091279108218255910 ~1999
541092037324655222310 ~2000
541169963108233992710 ~1999
541242679541242679110 ~2001
541251463541251463110 ~2001
5413219316495863172111 ~2004
541324181324794508710 ~2000
541324391108264878310 ~1999
541346941324808164710 ~2000
541347899108269579910 ~1999
541348583108269716710 ~1999
541350791433080632910 ~2001
541351259108270251910 ~1999
541352183108270436710 ~1999
541353779108270755910 ~1999
5413570734655670827911 ~2003
541359503108271900710 ~1999
541361159433088927310 ~2001
541363643108272728710 ~1999
541378811108275762310 ~1999
541390637324834382310 ~2000
541403519108280703910 ~1999
Exponent Prime Factor Digits Year
541407851108281570310 ~1999
541417403108283480710 ~1999
541420531541420531110 ~2001
541422379541422379110 ~2001
541424711108284942310 ~1999
541440899108288179910 ~1999
541443677324866206310 ~2000
541456033866329652910 ~2001
541462139108292427910 ~1999
541464431433171544910 ~2001
541466501324879900710 ~2000
541470599108294119910 ~1999
541472111108294422310 ~1999
541478699108295739910 ~1999
541479479108295895910 ~1999
541485383108297076710 ~1999
541504739108300947910 ~1999
541511879108302375910 ~1999
541538363108307672710 ~1999
541538951108307790310 ~1999
541550543108310108710 ~1999
541583257324949954310 ~2000
541583411433266728910 ~2001
541585417324951250310 ~2000
541593911108318782310 ~1999
Home
4.903.097 digits
e-mail
25-07-08