Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
5232521591255805181711 ~2002
5232569992511633595311 ~2002
523261337732565871910 ~2001
523270109418616087310 ~2001
523271939104654387910 ~1999
523281911104656382310 ~1999
523291697313975018310 ~2000
523298837418639069710 ~2001
523300901418640720910 ~2001
523304891104660978310 ~1999
523305983104661196710 ~1999
523310759104662151910 ~1999
523313783104662756710 ~1999
523318261313990956710 ~2000
523321031104664206310 ~1999
523339403104667880710 ~1999
523341503104668300710 ~1999
523344023104668804710 ~1999
523348379104669675910 ~1999
523353979523353979110 ~2001
523357319104671463910 ~1999
523360151104672030310 ~1999
523366601314019960710 ~2000
523367051104673410310 ~1999
523378319104675663910 ~1999
Exponent Prime Factor Digits Year
523392521418714016910 ~2001
523393751104678750310 ~1999
523399781314039868710 ~2000
523418681314051208710 ~2000
523419983104683996710 ~1999
523435043104687008710 ~1999
523445107523445107110 ~2001
523453033314071819910 ~2000
523458073314074843910 ~2000
523462153314077291910 ~2000
523468103104693620710 ~1999
523479083104695816710 ~1999
523483283104696656710 ~1999
523485779104697155910 ~1999
523499519104699903910 ~1999
523502477418801981710 ~2001
523507403104701480710 ~1999
523519091104703818310 ~1999
523529423104705884710 ~1999
523575791104715158310 ~1999
523577843104715568710 ~1999
523582427418865941710 ~2001
523589711104717942310 ~1999
523605359104721071910 ~1999
523609139104721827910 ~1999
Exponent Prime Factor Digits Year
523609253314165551910 ~2000
523618993314171395910 ~2000
523639163104727832710 ~1999
523670783104734156710 ~1999
523680851104736170310 ~1999
523686323104737264710 ~1999
523689431104737886310 ~1999
523692551104738510310 ~1999
523696847418957477710 ~2001
523727111104745422310 ~1999
523737443104747488710 ~1999
523747151104749430310 ~1999
5237485673456740542311 ~2003
523758659104751731910 ~1999
523758923104751784710 ~1999
523784879104756975910 ~1999
523790471104758094310 ~1999
523794923104758984710 ~1999
523796699104759339910 ~1999
523847531104769506310 ~1999
523848359104769671910 ~1999
523861391104772278310 ~1999
523864619104772923910 ~1999
523864871104772974310 ~1999
523866851104773370310 ~1999
Exponent Prime Factor Digits Year
523879439104775887910 ~1999
523881791104776358310 ~1999
523895591419116472910 ~2001
523896491104779298310 ~1999
523906511104781302310 ~1999
523922519104784503910 ~1999
523934711104786942310 ~1999
523950923104790184710 ~1999
523956239104791247910 ~1999
523979063104795812710 ~1999
523997711104799542310 ~1999
524008547943215384710 ~2001
524030291104806058310 ~1999
524037191104807438310 ~1999
524044583104808916710 ~1999
524045999104809199910 ~1999
524049893733669850310 ~2001
524052839104810567910 ~1999
524056139104811227910 ~1999
524079401314447640710 ~2000
524083139104816627910 ~1999
524086991104817398310 ~1999
524100887419280709710 ~2001
524123783104824756710 ~1999
524126891104825378310 ~1999
Home
4.724.182 digits
e-mail
25-04-13