Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
522067691104413538310 ~1999
522075553313245331910 ~2000
522078131104415626310 ~1999
522094019104418803910 ~1999
522110423104422084710 ~1999
522140219104428043910 ~1999
522145163104429032710 ~1999
522157763104431552710 ~1999
522157859104431571910 ~1999
522159023104431804710 ~1999
522174479104434895910 ~1999
522181739104436347910 ~1999
522185381313311228710 ~2000
522195071104439014310 ~1999
522195419104439083910 ~1999
522197051104439410310 ~1999
522200117313320070310 ~2000
522217481313330488710 ~2000
522292997417834397710 ~2001
522296651417837320910 ~2001
522299243104459848710 ~1999
522321083104464216710 ~1999
522335903104467180710 ~1999
522336301313401780710 ~2000
522388837313433302310 ~2000
Exponent Prime Factor Digits Year
5224035891253768613711 ~2002
522406799104481359910 ~1999
5224127631358273183911 ~2002
522418703104483740710 ~1999
522425951104485190310 ~1999
522453539104490707910 ~1999
522476219104495243910 ~1999
522482381417985904910 ~2001
5225004712508002260911 ~2002
522520403104504080710 ~1999
522524399104504879910 ~1999
522533243104506648710 ~1999
522548639104509727910 ~1999
522555023104511004710 ~1999
522558671104511734310 ~1999
522561131104512226310 ~1999
522574919104514983910 ~1999
522588263104517652710 ~1999
522589811104517962310 ~1999
5225961891985865518311 ~2002
522682679104536535910 ~1999
522695819104539163910 ~1999
522711803104542360710 ~1999
5227148473449917990311 ~2003
522715559104543111910 ~1999
Exponent Prime Factor Digits Year
522776531104555306310 ~1999
522805373313683223910 ~2000
52282825935134059004912 ~2005
522832259104566451910 ~1999
522836827836538923310 ~2001
522838993313703395910 ~2000
522841523104568304710 ~1999
522867019522867019110 ~2001
522868987522868987110 ~2001
522883919104576783910 ~1999
522906563104581312710 ~1999
522916133313749679910 ~2000
522945617313767370310 ~2000
522958031104591606310 ~1999
522972959104594591910 ~1999
522983603104596720710 ~1999
522987599104597519910 ~1999
522987697836780315310 ~2001
522988183836781092910 ~2001
522992663104598532710 ~1999
523000091104600018310 ~1999
523014053732219674310 ~2001
523028339104605667910 ~1999
523032151523032151110 ~2001
523034951104606990310 ~1999
Exponent Prime Factor Digits Year
523039199104607839910 ~1999
523050023104610004710 ~1999
523057103104611420710 ~1999
523063049418450439310 ~2001
523068779104613755910 ~1999
523074029732303640710 ~2001
523078739104615747910 ~1999
523083611104616722310 ~1999
523090097418472077710 ~2001
5230911372406219230311 ~2002
523098451523098451110 ~2001
523107061836971297710 ~2001
523108403104621680710 ~1999
523148999418519199310 ~2001
523175363104635072710 ~1999
523182899104636579910 ~1999
523189703104637940710 ~1999
523221383104644276710 ~1999
52322380937672114248112 ~2005
523229159104645831910 ~1999
523235711104647142310 ~1999
523237733313942639910 ~2000
523239001313943400710 ~2000
523251791104650358310 ~1999
523251941313951164710 ~2000
Home
4.724.182 digits
e-mail
25-04-13