Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
2919178315838356639 ~1997
291920561233536448910 ~1999
2919261115838522239 ~1997
2919374635838749279 ~1997
2919468835838937679 ~1997
2919525715839051439 ~1997
2919564595839129199 ~1997
291960353875881059110 ~2000
2919606715839213439 ~1997
2919630715839261439 ~1997
291964747992680139910 ~2000
291975193175185115910 ~1998
291986161175191696710 ~1998
291986957233589565710 ~1999
2919994435839988879 ~1997
2920002235840004479 ~1997
2920015435840030879 ~1997
2920036435840072879 ~1997
2920075915840151839 ~1997
292010881642423938310 ~2000
2920135915840271839 ~1997
2920140715840281439 ~1997
292014179233611343310 ~1999
292019099934461116910 ~2000
292037147233629717710 ~1999
Exponent Prime Factor Digits Year
292042193175225315910 ~1998
292043321233634656910 ~1999
2920461235840922479 ~1997
2920473835840947679 ~1997
2920492991401836635311 ~2001
292049657408869519910 ~1999
2920534315841068639 ~1997
2920630915841261839 ~1997
2920743115841486239 ~1997
292075871233660696910 ~1999
2920768915841537839 ~1997
292080743700993783310 ~2000
2920821235841642479 ~1997
292084693701003263310 ~2000
2920847035841694079 ~1997
2920850635841701279 ~1997
2920873315841746639 ~1997
292088297175252978310 ~1998
292090217175254130310 ~1998
2920905171577288791911 ~2001
2921020435842040879 ~1997
2921076115842152239 ~1997
292121953175273171910 ~1998
2921276395842552799 ~1997
2921355595842711199 ~1997
Exponent Prime Factor Digits Year
292144751233715800910 ~1999
2921449435842898879 ~1997
2921481835842963679 ~1997
292150093175290055910 ~1998
2921516635843033279 ~1997
2921552635843105279 ~1997
292159451525887011910 ~1999
292162699701190477710 ~2000
2921817595843635199 ~1997
2921849995843699999 ~1997
2921926435843852879 ~1997
292196371467514193710 ~1999
2921987995843975999 ~1997
292203917233763133710 ~1999
292204391935054051310 ~2000
2922088315844176639 ~1997
2922223795844447599 ~1997
2922291115844582239 ~1997
2922395394968072163111 ~2002
2922500995845001999 ~1997
292252501175351500710 ~1998
2922546595845093199 ~1997
2922619795845239599 ~1997
2922634315845268639 ~1997
292267021175360212710 ~1998
Exponent Prime Factor Digits Year
2922675715845351439 ~1997
2922844915845689839 ~1997
2922883195845766399 ~1997
2922958315845916639 ~1997
2923057195846114399 ~1997
2923103035846206079 ~1997
2923119835846239679 ~1997
292312639292312639110 ~1999
292314101175388460710 ~1998
2923153195846306399 ~1997
2923382515846765039 ~1997
2923481515846963039 ~1997
2923498915846997839 ~1997
2923565635847131279 ~1997
292392011233913608910 ~1999
2923921435847842879 ~1997
2923921795847843599 ~1997
2924074435848148879 ~1997
2924197195848394399 ~1997
2924214835848429679 ~1997
2924431435848862879 ~1997
2924465515848931039 ~1997
292460507233968405710 ~1999
2924773795849547599 ~1997
2924823835849647679 ~1997
Home
5.157.210 digits
e-mail
25-11-02