Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Digits Year
424463797254678278310 ~2000
424483861254690316710 ~2000
424498559339598847310 ~2000
4245070198490140399 ~1998
424532441254719464710 ~2000
4245724513736237568911 ~2002
4245795838491591679 ~1998
4245907798491815599 ~1998
4245912598491825199 ~1998
4246073998492147999 ~1998
4246105918492211839 ~1998
4246231091273869327111 ~2001
424624153254774491910 ~2000
4246327798492655599 ~1998
4246566238493132479 ~1998
4246606798493213599 ~1998
4246878598493757199 ~1998
4246923118493846239 ~1998
4246943518493887039 ~1998
4247155918494311839 ~1998
4247174398494348799 ~1998
4247247718494495439 ~1998
42473455912232355299312 ~2004
4247584438495168879 ~1998
4247591038495182079 ~1998
Exponent Prime Factor Digits Year
4247628238495256479 ~1998
4247723998495447999 ~1998
4247809918495619839 ~1998
4247954998495909999 ~1998
4247959198495918399 ~1998
4248129118496258239 ~1998
4248232798496465599 ~1998
4248533998497067999 ~1998
4248580798497161599 ~1998
424859609594803452710 ~2000
4248644638497289279 ~1998
424882061339905648910 ~2000
4248865198497730399 ~1998
424888901254933340710 ~2000
424897457254938474310 ~2000
4248999118497998239 ~1998
424901629934783583910 ~2001
424913117254947870310 ~2000
4249198438498396879 ~1998
424921597254952958310 ~2000
424938029339950423310 ~2000
4249556518499113039 ~1998
424961213254976727910 ~2000
424973579339978863310 ~2000
4249748398499496799 ~1998
Exponent Prime Factor Digits Year
424998401254999040710 ~2000
4250138398500276799 ~1998
4250179918500359839 ~1998
4250368198500736399 ~1998
4250712598501425199 ~1998
425087473255052483910 ~2000
4250956798501913599 ~1998
4251049198502098399 ~1998
425106221340084976910 ~2000
425131459425131459110 ~2000
425139257255083554310 ~2000
4251624598503249199 ~1998
4251634438503268879 ~1998
425180201255108120710 ~2000
4251841438503682879 ~1998
4252002718504005439 ~1998
4252120438504240879 ~1998
425214329340171463310 ~2000
4252197718504395439 ~1998
4252226398504452799 ~1998
4252350718504701439 ~1998
4252473598504947199 ~1998
4252525198505050399 ~1998
4252571113061851199311 ~2002
4252715518505431039 ~1998
Exponent Prime Factor Digits Year
4252935598505871199 ~1998
4253061118506122239 ~1998
4253149798506299599 ~1998
4253237638506475279 ~1998
4253279998506559999 ~1998
4253389438506778879 ~1998
4253762998507525999 ~1998
4253762991020903117711
4254035518508071039 ~1998
4254056638508113279 ~1998
4254058918508117839 ~1998
4254216118508432239 ~1998
425428693255257215910 ~2000
4254358198508716399 ~1998
425444983425444983110 ~2000
425482441255289464710 ~2000
4254826198509652399 ~1998
425490173595686242310 ~2000
4254923518509847039 ~1998
425494327765889788710 ~2001
425499097255299458310 ~2000
4255040038510080079 ~1998
4255122118510244239 ~1998
425519651340415720910 ~2000
4255301592723393017711 ~2002
Home
4.903.097 digits
e-mail
25-07-08