Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
29434710806358869421612712 ~2021
29435841572358871683144712 ~2021
29437325501958874651003912 ~2021
29438313427158876626854312 ~2021
29446072112358892144224712 ~2021
29447885006358895770012712 ~2021
29448202586358896405172712 ~2021
29448505867158897011734312 ~2021
2945049093433828...21459114 2024
2945146655279012...65126314 2025
2945275519872650...67883114 2024
29458764343158917528686312 ~2021
29459478548358918957096712 ~2021
29460277273158920554546312 ~2021
2946543007632651...06867114 2024
29465954849958931909699912 ~2021
29466360044358932720088712 ~2021
29468259431958936518863912 ~2021
29468790133158937580266312 ~2021
29469591739158939183478312 ~2021
29470503593958941007187912 ~2021
29470873103958941746207912 ~2021
2947194263872499...57617715 2025
29476254815958952509631912 ~2021
29476576538358953153076712 ~2021
Exponent Prime Factor Dig. Year
29478857815158957715630312 ~2021
29479925807958959851615912 ~2021
29480680784358961361568712 ~2021
29484892535958969785071912 ~2021
29485117579158970235158312 ~2021
2949021323771356...08934314 2024
2949492051014424...76515114 2023
29495819329158991638658312 ~2021
2949587885111940...84023915 2025
29497181423958994362847912 ~2021
29497315226358994630452712 ~2021
29497607593158995215186312 ~2021
29498760419958997520839912 ~2021
29500038439159000076878312 ~2021
29502254195959004508391912 ~2021
29502579715159005159430312 ~2021
29504792377159009584754312 ~2021
29504885972359009771944712 ~2021
2950533005832419...64780714 2024
2950584668776314...91167914 2023
29506605815959013211631912 ~2021
2950866547915016...31447114 2023
29509767245959019534491912 ~2021
2951048837271416...41889714 2024
2951241315592360...52472114 2024
Exponent Prime Factor Dig. Year
29512844521159025689042312 ~2021
29512877225959025754451912 ~2021
2951361673072656...05763114 2024
29514246758359028493516712 ~2021
29520374972359040749944712 ~2021
29523437336359046874672712 ~2021
29531074249159062148498312 ~2021
29532123785959064247571912 ~2021
29534258987959068517975912 ~2021
29535273302359070546604712 ~2021
29536097179159072194358312 ~2021
2953753686372835...38915314 2024
29547196967959094393935912 ~2021
29549179967959098359935912 ~2021
29551632128359103264256712 ~2021
29552671063159105342126312 ~2021
29553056533159106113066312 ~2021
29553703370359107406740712 ~2021
29554029611959108059223912 ~2021
29557373053159114746106312 ~2021
29559312806359118625612712 ~2021
29560529015959121058031912 ~2021
29564587151959129174303912 ~2021
29566377659959132755319912 ~2021
29569357249159138714498312 ~2021
Exponent Prime Factor Dig. Year
29573019133159146038266312 ~2021
29573449795159146899590312 ~2021
29577718697959155437395912 ~2021
29581669171159163338342312 ~2021
29583172627159166345254312 ~2021
2958340628996449...71198314 2023
29583512869159167025738312 ~2021
2958400043812366...35048114 2024
2958553502517461...33302315 2023
29586322667959172645335912 ~2021
29587625876359175251752712 ~2021
29589582731959179165463912 ~2021
2959173619079291...63879914 2023
29592043832359184087664712 ~2021
2959236437393077...94885714 2024
29593385228359186770456712 ~2021
29594616391159189232782312 ~2021
29596437385159192874770312 ~2021
29601771955159203543910312 ~2021
2960601274271717...39076714 2024
29611866251959223732503912 ~2021
29611979369959223958739912 ~2021
29612133239959224266479912 ~2021
29620425644359240851288712 ~2021
29620538423959241076847912 ~2021
Home
5.037.460 digits
e-mail
25-09-07