Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17317393447134634786894312 ~2019
17319034249134638068498312 ~2019
17319103885134638207770312 ~2019
17319208460334638416920712 ~2019
1732034005431402...43983115 2025
17320384286334640768572712 ~2019
17324649913134649299826312 ~2019
17325476765934650953531912 ~2019
17326708976334653417952712 ~2019
17326824728334653649456712 ~2019
17328326257134656652514312 ~2019
17328373931934656747863912 ~2019
17329521869934659043739912 ~2019
17329743409134659486818312 ~2019
17329914071934659828143912 ~2019
17330471719134660943438312 ~2019
17330638441134661276882312 ~2019
1733075368919462...14248714 2023
17331127538334662255076712 ~2019
17331395174334662790348712 ~2019
17331744011934663488023912 ~2019
17332707152334665414304712 ~2019
17333222678334666445356712 ~2019
17333387429934666774859912 ~2019
17333562161934667124323912 ~2019
Exponent Prime Factor Dig. Year
17333659178334667318356712 ~2019
17334364223934668728447912 ~2019
17335028180334670056360712 ~2019
17336180191134672360382312 ~2019
17337311246334674622492712 ~2019
17340504937134681009874312 ~2019
17341648178334683296356712 ~2019
17342173877934684347755912 ~2019
17344504283934689008567912 ~2019
1734462031698325...52112114 2024
17344853213934689706427912 ~2019
17345242757934690485515912 ~2019
17345701523934691403047912 ~2019
17347766413134695532826312 ~2019
17349435251934698870503912 ~2019
17349931469934699862939912 ~2019
17352030893934704061787912 ~2019
1735319428191055...23395315 2024
1735371063838052...36171314 2025
17354016026334708032052712 ~2019
17354830088334709660176712 ~2019
17355109891134710219782312 ~2019
17355193214334710386428712 ~2019
17355365389134710730778312 ~2019
17360356736334720713472712 ~2019
Exponent Prime Factor Dig. Year
17362546889934725093779912 ~2019
17363919506334727839012712 ~2019
17363998304334727996608712 ~2019
17364250387134728500774312 ~2019
17365301665134730603330312 ~2019
1736607440031806...37631314 2024
1736627689671587...83583915 2023
17367010910334734021820712 ~2019
17367144728334734289456712 ~2019
17369346065934738692131912 ~2019
17371219316334742438632712 ~2019
17371948931934743897863912 ~2019
17372626094334745252188712 ~2019
17372958080334745916160712 ~2019
17374728533934749457067912 ~2019
17375192563134750385126312 ~2019
17375320669134750641338312 ~2019
17375742613134751485226312 ~2019
17376055517934752111035912 ~2019
17384048893134768097786312 ~2019
17384498293134768996586312 ~2019
17384531957934769063915912 ~2019
17384766061134769532122312 ~2019
17385362401134770724802312 ~2019
17387430731934774861463912 ~2019
Exponent Prime Factor Dig. Year
17387564761134775129522312 ~2019
17390275283934780550567912 ~2019
17390880656334781761312712 ~2019
17391411013134782822026312 ~2019
17394773660334789547320712 ~2019
17396136821934792273643912 ~2019
17399322091134798644182312 ~2019
17400015067134800030134312 ~2019
17401400983134802801966312 ~2019
17402230859934804461719912 ~2019
17403225866334806451732712 ~2019
17404699073934809398147912 ~2019
17404852118334809704236712 ~2019
17405669270334811338540712 ~2019
17406969607134813939214312 ~2019
17406972731934813945463912 ~2019
1740886985032506...58443314 2024
17410902230334821804460712 ~2019
1741103240811110...76367915 2025
17412657485934825314971912 ~2019
1741268328375815...16755914 2024
17417229961134834459922312 ~2019
17418280087134836560174312 ~2019
17418854162334837708324712 ~2019
17419596031134839192062312 ~2019
Home
5.142.307 digits
e-mail
25-10-26