Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
2962677714171587...47951315 2025
29626932428359253864856712 ~2021
29627352134359254704268712 ~2021
2963194991212133...93671314 2024
29637104995159274209990312 ~2021
29637633991159275267982312 ~2021
29638147091959276294183912 ~2021
29638891043959277782087912 ~2021
2963974729092786...45344714 2024
29640840811159281681622312 ~2021
2964285772431956...09803914 2024
29646247520359292495040712 ~2021
2965065392477590...04723314 2025
29650889468359301778936712 ~2021
2965125871211132...28022315 2023
29651577131959303154263912 ~2021
29663732629159327465258312 ~2021
29665075583959330151167912 ~2021
29666749939159333499878312 ~2021
29668663448359337326896712 ~2021
2967037911617120...87864114 2025
29675306743159350613486312 ~2021
29675978168359351956336712 ~2021
29678126000359356252000712 ~2021
29679682736359359365472712 ~2021
Exponent Prime Factor Dig. Year
29680369103959360738207912 ~2021
2968272137831543...16716115 2025
29684338952359368677904712 ~2021
29684582735959369165471912 ~2021
29685384133159370768266312 ~2021
29688928796359377857592712 ~2021
2969610271332044...83783916 2023
29696824526359393649052712 ~2021
29697013613959394027227912 ~2021
29703313907959406627815912 ~2021
29703456191959406912383912 ~2021
29703897781159407795562312 ~2021
2970609677397367...99927314 2025
29707054928359414109856712 ~2021
29709995624359419991248712 ~2021
29713081868359426163736712 ~2021
29714148643159428297286312 ~2021
29714371121959428742243912 ~2021
29716506313159433012626312 ~2021
29719143257959438286515912 ~2021
29719486867159438973734312 ~2021
29719648892359439297784712 ~2021
29721150599959442301199912 ~2021
2972364488711569...00388915 2025
29725037419159450074838312 ~2021
Exponent Prime Factor Dig. Year
29727674111959455348223912 ~2021
29728395218359456790436712 ~2021
29729298341959458596683912 ~2021
29730148013959460296027912 ~2021
29731168430359462336860712 ~2021
2973214795137314...96019914 2025
29737218281959474436563912 ~2021
29737651070359475302140712 ~2021
29739276428359478552856712 ~2021
29742778700359485557400712 ~2021
29743458428359486916856712 ~2021
29746539919159493079838312 ~2021
29748214220359496428440712 ~2021
29748226697959496453395912 ~2021
2975145216318568...22972914 2025
29753578010359507156020712 ~2021
29754426409159508852818312 ~2021
29755677041959511354083912 ~2021
29756818525159513637050312 ~2021
2975753632432678...69187114 2024
29757546044359515092088712 ~2021
2976129214432286...52512716 2023
29762014441159524028882312 ~2021
29769432791959538865583912 ~2021
29769907327159539814654312 ~2021
Exponent Prime Factor Dig. Year
29770331432359540662864712 ~2021
29770514456359541028912712 ~2021
2977165923676728...87494314 2023
29778478916359556957832712 ~2021
29778856225159557712450312 ~2021
29778940880359557881760712 ~2021
29780992457959561984915912 ~2021
2978719546135957...92260114 2025
29787244519159574489038312 ~2021
29787292958359574585916712 ~2021
29789479001959578958003912 ~2021
29790875323159581750646312 ~2021
29792311459159584622918312 ~2021
2979236490775243...23755314 2024
2979517336991054...72944715 2023
29796697127959593394255912 ~2021
29797206254359594412508712 ~2021
29800939273159601878546312 ~2021
2980107984297152...62296114 2025
29804170921159608341842312 ~2021
29806046753959612093507912 ~2021
29807438414359614876828712 ~2021
29809122109159618244218312 ~2021
2980943446791007...50150315 2025
29809892024359619784048712 ~2021
Home
5.037.460 digits
e-mail
25-09-07