Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12945995303925891990607912 ~2018
12947505203925895010407912 ~2018
12947703623925895407247912 ~2018
12948817211925897634423912 ~2018
12948949567125897899134312 ~2018
12949106701125898213402312 ~2018
12949141471125898282942312 ~2018
12949413503377696481019912 ~2019
12949755320325899510640712 ~2018
12950189344177701136064712 ~2019
12951179078325902358156712 ~2018
12951185633925902371267912 ~2018
12953349515925906699031912 ~2018
12953365085925906730171912 ~2018
12953729246325907458492712 ~2018
12956220859125912441718312 ~2018
12956886851925913773703912 ~2018
12957154705125914309410312 ~2018
12957245609925914491219912 ~2018
12957522991125915045982312 ~2018
12957940250325915880500712 ~2018
12958902227377753413363912 ~2019
12959172767925918345535912 ~2018
12960027344325920054688712 ~2018
12960373495125920746990312 ~2018
Exponent Prime Factor Dig. Year
12960520933777763125602312 ~2019
12960595385925921190771912 ~2018
12960837914325921675828712 ~2018
12961064759925922129519912 ~2018
12961116559125922233118312 ~2018
12961619011125923238022312 ~2018
12962277535125924555070312 ~2018
12962825997777776955986312 ~2019
12962948951925925897903912 ~2018
12962984074177777904444712 ~2019
12963436232325926872464712 ~2018
12963547671777781286030312 ~2019
12963576686325927153372712 ~2018
12965185445925930370891912 ~2018
1296533396111226...27200715 2024
12965422698177792536188712 ~2019
12965558240325931116480712 ~2018
12966050305125932100610312 ~2018
12966885236325933770472712 ~2018
12967366075125934732150312 ~2018
12967742653125935485306312 ~2018
12968179136325936358272712 ~2018
12968501827125937003654312 ~2018
12968720575125937441150312 ~2018
12968864438325937728876712 ~2018
Exponent Prime Factor Dig. Year
12968971356177813828136712 ~2019
12969858560325939717120712 ~2018
12972062066325944124132712 ~2018
12973355029125946710058312 ~2018
1297336549432724...53803114 2024
12975287539125950575078312 ~2018
12975433084177852598504712 ~2019
12975724844325951449688712 ~2018
1297577101631453...53825714 2025
12976006536177856039216712 ~2019
12976272779925952545559912 ~2018
12976371830325952743660712 ~2018
12977675730177866054380712 ~2019
12978013956177868083736712 ~2019
12978180566325956361132712 ~2018
12978996509925957993019912 ~2018
12979254878325958509756712 ~2018
12982220009925964440019912 ~2018
12983150503125966301006312 ~2018
12983643859125967287718312 ~2018
12983808596325967617192712 ~2018
12984908144325969816288712 ~2018
12986261065125972522130312 ~2018
1298635729394597...82040714 2023
12987783764325975567528712 ~2018
Exponent Prime Factor Dig. Year
1298895900795673...46507315 2025
12989928647925979857295912 ~2018
12992736281925985472563912 ~2018
12993179411925986358823912 ~2018
12993880807125987761614312 ~2018
12993974089125987948178312 ~2018
12994882975777969297854312 ~2019
12996632021925993264043912 ~2018
12996731435925993462871912 ~2018
12998322998325996645996712 ~2018
12999138209925998276419912 ~2018
13000359818326000719636712 ~2018
13000797781126001595562312 ~2018
13001139133778006834802312 ~2019
13001301701926002603403912 ~2018
13001766782326003533564712 ~2018
13002689993926005379987912 ~2018
13002982447126005964894312 ~2018
13003199351378019196107912 ~2019
13003519409926007038819912 ~2018
13005830147926011660295912 ~2018
13006446293926012892587912 ~2018
13006586400178039518400712 ~2019
13007487624178044925744712 ~2019
13008501247126017002494312 ~2018
Home
5.037.460 digits
e-mail
25-09-07