Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13008510923926017021847912 ~2018
1300864953672731...02707114 2024
13009149013126018298026312 ~2018
13009821739378058930435912 ~2019
13009844177926019688355912 ~2018
13012062417778072374506312 ~2019
13012954697926025909395912 ~2018
13013086297126026172594312 ~2018
13013087672326026175344712 ~2018
13013105696326026211392712 ~2018
13013226173926026452347912 ~2018
13014574556326029149112712 ~2018
13015948415926031896831912 ~2018
13016376566326032753132712 ~2018
13017443630326034887260712 ~2018
13017917627378107505763912 ~2019
13018902800326037805600712 ~2018
13019027105926038054211912 ~2018
13019275583926038551167912 ~2018
13019530543126039061086312 ~2018
13019904536326039809072712 ~2018
13019996039926039992079912 ~2018
13020405551926040811103912 ~2018
13020791240326041582480712 ~2018
13021084856326042169712712 ~2018
Exponent Prime Factor Dig. Year
13021166941778127001650312 ~2019
13021260133126042520266312 ~2018
13021274725126042549450312 ~2018
13023412625926046825251912 ~2018
13026106193926052212387912 ~2018
13026810475126053620950312 ~2018
13026878987926053757975912 ~2018
13027411613926054823227912 ~2018
13027443013126054886026312 ~2018
13028160667126056321334312 ~2018
13028750516326057501032712 ~2018
13029256934326058513868712 ~2018
13029990227926059980455912 ~2018
13030201224178181207344712 ~2019
13030351991926060703983912 ~2018
13031312473126062624946312 ~2018
13031605021126063210042312 ~2018
13031967698326063935396712 ~2018
13032141504178192849024712 ~2019
13032180979126064361958312 ~2018
13032448261126064896522312 ~2018
13032570619126065141238312 ~2018
13034258125126068516250312 ~2018
13034364251926068728503912 ~2018
13034560201126069120402312 ~2018
Exponent Prime Factor Dig. Year
13034700422326069400844712 ~2018
13036215571126072431142312 ~2018
13037165419126074330838312 ~2018
13038648169126077296338312 ~2018
13039089653926078179307912 ~2018
13039727239126079454478312 ~2018
13040937838178245627028712 ~2019
13041692597926083385195912 ~2018
13042615478326085230956712 ~2018
13044138188326088276376712 ~2018
13045792885126091585770312 ~2018
13050333519778302001118312 ~2019
13050800257126101600514312 ~2018
13051212434326102424868712 ~2018
13052759481778316556890312 ~2019
1305330640972584...69120714 2024
13054045617778324273706312 ~2019
13054508369926109016739912 ~2018
13054559699926109119399912 ~2018
13055049530326110099060712 ~2018
1305614454733734...40527914 2023
13057196305126114392610312 ~2018
13057626263378345757579912 ~2019
13058513539126117027078312 ~2018
13058856661126117713322312 ~2018
Exponent Prime Factor Dig. Year
13059417421126118834842312 ~2018
13059482144326118964288712 ~2018
13059680003926119360007912 ~2018
13059706019926119412039912 ~2018
13060046971126120093942312 ~2018
13060387775926120775551912 ~2018
13060475852326120951704712 ~2018
13060493422178362960532712 ~2019
13062765836326125531672712 ~2018
13062831347926125662695912 ~2018
13063103809126126207618312 ~2018
13064409860326128819720712 ~2018
13065574763926131149527912 ~2018
13066321967926132643935912 ~2018
1306667360031257...03488715 2025
13069565335126139130670312 ~2018
13070762192326141524384712 ~2018
13070940332326141880664712 ~2018
13071145256326142290512712 ~2018
13071297601126142595202312 ~2018
13071554658178429327948712 ~2019
13072013489926144026979912 ~2018
13072689236326145378472712 ~2018
13072727101126145454202312 ~2018
1307329635791568...62948114 2024
Home
5.037.460 digits
e-mail
25-09-07