Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12878521622325757043244712 ~2018
12880185131925760370263912 ~2018
1288037929637547...67631914 2025
12881689388325763378776712 ~2018
12881722651125763445302312 ~2018
12881747947377290487683912 ~2019
12882320126325764640252712 ~2018
12882719890177296319340712 ~2019
12883096068177298576408712 ~2019
12883965932325767931864712 ~2018
12884110883925768221767912 ~2018
12884827381125769654762312 ~2018
12885582629925771165259912 ~2018
12889649101125779298202312 ~2018
12889858724325779717448712 ~2018
12889878903777339273422312 ~2019
12890638759125781277518312 ~2018
12891104711925782209423912 ~2018
12891391499925782782999912 ~2018
12891400049925782800099912 ~2018
12892566611925785133223912 ~2018
12892593679125785187358312 ~2018
12893090036325786180072712 ~2018
12893520787377361124723912 ~2019
12893861678325787723356712 ~2018
Exponent Prime Factor Dig. Year
12894227648325788455296712 ~2018
12894965195925789930391912 ~2018
12895631990325791263980712 ~2018
12896460746325792921492712 ~2018
12896671058325793342116712 ~2018
12897879989925795759979912 ~2018
1290047884311302...31531115 2025
1290053209572683...75905714 2024
12900532831125801065662312 ~2018
12901143283125802286566312 ~2018
12901146293925802292587912 ~2018
12901345868325802691736712 ~2018
12902856557925805713115912 ~2018
12904765709925809531419912 ~2018
12906170191125812340382312 ~2018
1290653383331445...89329714 2025
12907149509925814299019912 ~2018
12907558303777445349822312 ~2019
12908549851125817099702312 ~2018
12908729779125817459558312 ~2018
12910079975925820159951912 ~2018
1291196053794364...61810314 2023
12912224894325824449788712 ~2018
12912450416325824900832712 ~2018
12912628352325825256704712 ~2018
Exponent Prime Factor Dig. Year
12913548731925827097463912 ~2018
12914526569925829053139912 ~2018
12914743840177488463040712 ~2019
12915269243925830538487912 ~2018
1291579829592479...72812914 2024
12916444294177498665764712 ~2019
12916458767925832917535912 ~2018
12916490072325832980144712 ~2018
12917050423777502302542312 ~2019
12918289253925836578507912 ~2018
12919317029925838634059912 ~2018
12919393613925838787227912 ~2018
12919723385925839446771912 ~2018
12920410142325840820284712 ~2018
12921185378325842370756712 ~2018
12921255503925842511007912 ~2018
12921353672325842707344712 ~2018
12921673437777530040626312 ~2019
12922579655925845159311912 ~2018
12923247446325846494892712 ~2018
12923558759925847117519912 ~2018
12925276058325850552116712 ~2018
1292582211011331...73403115 2023
12925965179925851930359912 ~2018
12926378081925852756163912 ~2018
Exponent Prime Factor Dig. Year
12928273099125856546198312 ~2018
12929172299925858344599912 ~2018
12929666646177577999876712 ~2019
12929739121125859478242312 ~2018
12930730980177584385880712 ~2019
12931180661925862361323912 ~2018
12931430765925862861531912 ~2018
12932765534325865531068712 ~2018
12933026755125866053510312 ~2018
12935635873125871271746312 ~2018
12936193016325872386032712 ~2018
12936280201125872560402312 ~2018
12936292742325872585484712 ~2018
12936599408325873198816712 ~2018
12936657985125873315970312 ~2018
12937785074325875570148712 ~2018
12937884751125875769502312 ~2018
12938274560325876549120712 ~2018
12938745029925877490059912 ~2018
12939187555125878375110312 ~2018
12940292743125880585486312 ~2018
12940844035125881688070312 ~2018
12942466847925884933695912 ~2018
12942653089777655918538312 ~2019
12945326695125890653390312 ~2018
Home
5.037.460 digits
e-mail
25-09-07