Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11977608007123955216014312 ~2018
11978135174323956270348712 ~2018
1197972031091233...20227115 2023
11979737677123959475354312 ~2018
11980734747771884408486312 ~2019
11981432528323962865056712 ~2018
11983636603123967273206312 ~2018
11986602470323973204940712 ~2018
11987327698171923966188712 ~2019
11987402491123974804982312 ~2018
11987641973923975283947912 ~2018
11987736739123975473478312 ~2018
11987903468323975806936712 ~2018
11989165615123978331230312 ~2018
11989504664323979009328712 ~2018
11989767881923979535763912 ~2018
11990112524323980225048712 ~2018
11990257433923980514867912 ~2018
1199265650292878...60696114 2024
11994224304171965345824712 ~2019
11994417758323988835516712 ~2018
11995460423923990920847912 ~2018
11995860146323991720292712 ~2018
11995922074171975532444712 ~2019
11996071021123992142042312 ~2018
Exponent Prime Factor Dig. Year
11997436465123994872930312 ~2018
11997557072323995114144712 ~2018
11999367656323998735312712 ~2018
11999575049923999150099912 ~2018
11999623736323999247472712 ~2018
11999735556171998413336712 ~2019
12000567883372003407299912 ~2019
12001127398172006764388712 ~2019
12002575910324005151820712 ~2018
1200309662279818...37368714 2025
12003394705772020368234312 ~2019
12003538010324007076020712 ~2018
12003736465124007472930312 ~2018
12004262611124008525222312 ~2018
12005248466324010496932712 ~2018
12006783541772040701250312 ~2019
12007670045924015340091912 ~2018
12008317591124016635182312 ~2018
12008390816324016781632712 ~2018
12008625637372051753823912 ~2019
12008698471124017396942312 ~2018
12009854417924019708835912 ~2018
12010538023124021076046312 ~2018
12010594219372063565315912 ~2019
12010643459924021286919912 ~2018
Exponent Prime Factor Dig. Year
12013151756324026303512712 ~2018
12013185944324026371888712 ~2018
12013991381924027982763912 ~2018
12016356490172098138940712 ~2019
12016501424324033002848712 ~2018
12018495109124036990218312 ~2018
12019004707772114028246312 ~2019
12020032994324040065988712 ~2018
12020140915124040281830312 ~2018
12020267725124040535450312 ~2018
12023201467124046402934312 ~2018
12023268506324046537012712 ~2018
12023334878324046669756712 ~2018
12024078764324048157528712 ~2018
12024166709924048333419912 ~2018
12024366553372146199319912 ~2019
12024660014324049320028712 ~2018
12024885618172149313708712 ~2019
12025088881124050177762312 ~2018
1202540862373655...21604914 2024
12025739263124051478526312 ~2018
12025794731924051589463912 ~2018
12025954913924051909827912 ~2018
12027027302324054054604712 ~2018
12027675365924055350731912 ~2018
Exponent Prime Factor Dig. Year
12027711823124055423646312 ~2018
12028280027924056560055912 ~2018
12030817831124061635662312 ~2018
12031752881924063505763912 ~2018
12032818272172196909632712 ~2019
12032948059124065896118312 ~2018
12033658463924067316927912 ~2018
12033670487924067340975912 ~2018
12034491664172206949984712 ~2019
12034598989124069197978312 ~2018
1203485292891027...01280715 2023
12035353267124070706534312 ~2018
12035443292324070886584712 ~2018
12036064243124072128486312 ~2018
12036221735924072443471912 ~2018
12036639413924073278827912 ~2018
12038018657924076037315912 ~2018
12038055343124076110686312 ~2018
12038732196172232393176712 ~2019
12039112891124078225782312 ~2018
12039131665124078263330312 ~2018
12039882541124079765082312 ~2018
12040081217924080162435912 ~2018
12041215093124082430186312 ~2018
12041517902324083035804712 ~2018
Home
4.888.230 digits
e-mail
25-06-29