Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
11867362751923734725503912 ~2018
11868429779923736859559912 ~2018
11869074365923738148731912 ~2018
11869282910323738565820712 ~2018
11869976041123739952082312 ~2018
11870189921923740379843912 ~2018
11870289205123740578410312 ~2018
11870752352323741504704712 ~2018
11871697495123743394990312 ~2018
11871717035923743434071912 ~2018
11872000460323744000920712 ~2018
11872191266323744382532712 ~2018
11872312517923744625035912 ~2018
11873095435123746190870312 ~2018
11873539658323747079316712 ~2018
11874221026171245326156712 ~2019
11874430514323748861028712 ~2018
11874467737123748935474312 ~2018
11874488161123748976322312 ~2018
11874979041771249874250312 ~2019
11875669964323751339928712 ~2018
11876385395923752770791912 ~2018
1187645757911009...42235115 2025
11876833013923753666027912 ~2018
11877439838323754879676712 ~2018
Exponent Prime Factor Dig. Year
11878094810323756189620712 ~2018
11878126673371268760039912 ~2019
11879622061123759244122312 ~2018
11879701955923759403911912 ~2018
11880452743123760905486312 ~2018
11880830767123761661534312 ~2018
11881879355923763758711912 ~2018
11883622315123767244630312 ~2018
11884829519923769659039912 ~2018
11885331359923770662719912 ~2018
11887014749923774029499912 ~2018
11888004725923776009451912 ~2018
11888938797771333632786312 ~2019
11889354527923778709055912 ~2018
11890026161923780052323912 ~2018
11891287425771347724554312 ~2019
11891397333771348384002312 ~2019
1189148948271664...20903916 2023
11891640607123783281214312 ~2018
11892836042323785672084712 ~2018
11893013563123786027126312 ~2018
11894433986323788867972712 ~2018
11894604365923789208731912 ~2018
11894724272323789448544712 ~2018
11894735855923789471711912 ~2018
Exponent Prime Factor Dig. Year
11895577310323791154620712 ~2018
11895851390323791702780712 ~2018
11897625224323795250448712 ~2018
11898034891123796069782312 ~2018
11898365201923796730403912 ~2018
11898684458323797368916712 ~2018
11898692083123797384166312 ~2018
11899924195123799848390312 ~2018
11900096588323800193176712 ~2018
11900184098323800368196712 ~2018
1190062122315617...17303314 2023
11900796451123801592902312 ~2018
11900947994323801895988712 ~2018
11901366500323802733000712 ~2018
11902721621923805443243912 ~2018
11904088069123808176138312 ~2018
11905736365123811472730312 ~2018
11905944941923811889883912 ~2018
11907890713123815781426312 ~2018
11909105834323818211668712 ~2018
11910072787123820145574312 ~2018
11910244499923820488999912 ~2018
11911543985371469263911912 ~2019
11912665052323825330104712 ~2018
11914722433123829444866312 ~2018
Exponent Prime Factor Dig. Year
11914976827371489860963912 ~2019
11915029376323830058752712 ~2018
11915497747123830995494312 ~2018
11915966334171495798004712 ~2019
11916212725123832425450312 ~2018
11916512005123833024010312 ~2018
11916706484323833412968712 ~2018
11917124378323834248756712 ~2018
11917249340323834498680712 ~2018
11917366931923834733863912 ~2018
11917380683371504284099912 ~2019
11920680133123841360266312 ~2018
11920731961123841463922312 ~2018
11921438678323842877356712 ~2018
11922358835371534153011912 ~2019
11922383863123844767726312 ~2018
11922559868323845119736712 ~2018
11923968025123847936050312 ~2018
11924228527123848457054312 ~2018
11924245579123848491158312 ~2018
11924916257923849832515912 ~2018
11925475945123850951890312 ~2018
11925842336323851684672712 ~2018
11926002266323852004532712 ~2018
11926017417771556104506312 ~2019
Home
4.888.230 digits
e-mail
25-06-29