Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17384531957934769063915912 ~2019
17385362401134770724802312 ~2019
17387430731934774861463912 ~2019
17387564761134775129522312 ~2019
17390880656334781761312712 ~2019
17394773660334789547320712 ~2019
17400015067134800030134312 ~2019
17401400983134802801966312 ~2019
17403225866334806451732712 ~2019
17404699073934809398147912 ~2019
17404852118334809704236712 ~2019
17405669270334811338540712 ~2019
17406969607134813939214312 ~2019
17406972731934813945463912 ~2019
1740886985032506...58443314 2024
17410902230334821804460712 ~2019
1741103240811110...76367915 2025
17412657485934825314971912 ~2019
1741268328375815...16755914 2024
17417229961134834459922312 ~2019
17418280087134836560174312 ~2019
17418854162334837708324712 ~2019
17419596031134839192062312 ~2019
17421086525934842173051912 ~2019
17421550391934843100783912 ~2019
Exponent Prime Factor Dig. Year
17422800050334845600100712 ~2019
17422989938334845979876712 ~2019
17423465078334846930156712 ~2019
17428050023934856100047912 ~2019
17429990663934859981327912 ~2019
17430961712334861923424712 ~2019
17432957498334865914996712 ~2019
17439449773134878899546312 ~2019
17440871531934881743063912 ~2019
17441810402334883620804712 ~2019
17444393681934888787363912 ~2019
17445388103934890776207912 ~2019
17447176946334894353892712 ~2019
17447182885134894365770312 ~2019
17448586220334897172440712 ~2019
17449611890334899223780712 ~2019
17449727393934899454787912 ~2019
17449828921134899657842312 ~2019
17450607512334901215024712 ~2019
17450997949134901995898312 ~2019
17452490777934904981555912 ~2019
17453843449134907686898312 ~2019
17456055187134912110374312 ~2019
17456639945934913279891912 ~2019
17459863379934919726759912 ~2019
Exponent Prime Factor Dig. Year
17462743982334925487964712 ~2019
17463737978334927475956712 ~2019
17464849261134929698522312 ~2019
17468189375934936378751912 ~2019
17468392898334936785796712 ~2019
17469397597134938795194312 ~2019
17470020541134940041082312 ~2019
17470506403134941012806312 ~2019
17472056641134944113282312 ~2019
1747276411811362...01211914 2024
17473364395134946728790312 ~2019
17473421707134946843414312 ~2019
1747630126732824...47956915 2024
17478004159134956008318312 ~2019
17478741175134957482350312 ~2019
1747899344831541...21400715 2023
17479326713934958653427912 ~2019
1747942683714929...68062314 2023
17479457252334958914504712 ~2019
17482196684334964393368712 ~2019
17482373114334964746228712 ~2019
17483861953134967723906312 ~2019
17485849849134971699698312 ~2019
17487015815934974031631912 ~2019
17487195554334974391108712 ~2019
Exponent Prime Factor Dig. Year
1749390433273638...01201714 2024
17495454110334990908220712 ~2019
17495981749134991963498312 ~2019
17497874927934995749855912 ~2019
1749953331531060...89071915 2023
17500132909135000265818312 ~2019
17501024684335002049368712 ~2019
17502751547935005503095912 ~2019
17503946179135007892358312 ~2019
1750787960775007...67802314 2023
17510077652335020155304712 ~2019
17511144872335022289744712 ~2019
17512657076335025314152712 ~2019
17512970570335025941140712 ~2019
17513761399135027522798312 ~2019
17516275877935032551755912 ~2019
17516371058335032742116712 ~2019
17516418505135032837010312 ~2019
17517363689935034727379912 ~2019
17518356278335036712556712 ~2019
17519571407935039142815912 ~2019
17520303602335040607204712 ~2019
1752130701196623...50498314 2023
17522394049135044788098312 ~2019
17523724231135047448462312 ~2019
Home
4.724.182 digits
e-mail
25-04-13