Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9280444498155682666988712 ~2018
9280531175918561062351912 ~2017
9280595821355683574927912 ~2018
9280743353918561486707912 ~2017
9280766899118561533798312 ~2017
9280776362318561552724712 ~2017
9281508923918563017847912 ~2017
9282490745918564981491912 ~2017
9283196285918566392571912 ~2017
9283325598155699953588712 ~2018
9286544545118573089090312 ~2017
9287694923918575389847912 ~2017
9287715551974301724415312 ~2018
9288008875118576017750312 ~2017
9288052057118576104114312 ~2017
9288245216318576490432712 ~2017
9288697342774309578741712 ~2018
9288718763918577437527912 ~2017
9289055789918578111579912 ~2017
9290252147918580504295912 ~2017
9290857505918581715011912 ~2017
9291564739755749388438312 ~2018
9292201622318584403244712 ~2017
9292946017118585892034312 ~2017
9292947067118585894134312 ~2017
Exponent Prime Factor Dig. Year
9293584030155761504180712 ~2018
9293721536318587443072712 ~2017
9293807737118587615474312 ~2017
9296370425918592740851912 ~2017
9296445877118592891754312 ~2017
9296720551118593441102312 ~2017
9297349778318594699556712 ~2017
9297574069118595148138312 ~2017
9299538644318599077288712 ~2017
9299777677118599555354312 ~2017
9300149017118600298034312 ~2017
9300655046318601310092712 ~2017
9300686600318601373200712 ~2017
9301073185118602146370312 ~2017
9301163581355806981487912 ~2018
9301948133918603896267912 ~2017
9302123324318604246648712 ~2017
9302402342974419218743312 ~2018
9302626699755815760198312 ~2018
9304415395755826492374312 ~2018
9304425103118608850206312 ~2017
9305170463918610340927912 ~2017
9305966067755835796406312 ~2018
9306231589118612463178312 ~2017
9306345836318612691672712 ~2017
Exponent Prime Factor Dig. Year
9306605137118613210274312 ~2017
9307464623918614929247912 ~2017
9307549280318615098560712 ~2017
930849468591414...92256914 2024
9308715991118617431982312 ~2017
9308875658318617751316712 ~2017
9309845941118619691882312 ~2017
9310077449355860464695912 ~2018
9310889015355865334091912 ~2018
9311292068318622584136712 ~2017
9311444177918622888355912 ~2017
9311767111355870602667912 ~2018
9311824871918623649743912 ~2017
9311845255174494762040912 ~2018
9312549667118625099334312 ~2017
9313075112318626150224712 ~2017
9313406233118626812466312 ~2017
9313433630318626867260712 ~2017
9314612983118629225966312 ~2017
9314754787755888528726312 ~2018
9314786123918629572247912 ~2017
9314969761118629939522312 ~2017
9315048287918630096575912 ~2017
9315054443918630108887912 ~2017
9315954439174527635512912 ~2018
Exponent Prime Factor Dig. Year
9316321724318632643448712 ~2017
9316999915118633999830312 ~2017
9317244422318634488844712 ~2017
9318156320318636312640712 ~2017
9318695570318637391140712 ~2017
931929523612590...75635914 2024
9319384789118638769578312 ~2017
9319427333918638854667912 ~2017
9320299166318640598332712 ~2017
9320615345918641230691912 ~2017
9320720003918641440007912 ~2017
9320983352318641966704712 ~2017
9321156944318642313888712 ~2017
9321569615355929417691912 ~2018
9322175522974577404183312 ~2018
9322476847118644953694312 ~2017
9322825751974582606015312 ~2018
9322944563355937667379912 ~2018
9323122373355938734239912 ~2018
9323508188318647016376712 ~2017
9324350438318648700876712 ~2017
9324625229918649250459912 ~2017
9324965670155949794020712 ~2018
9326097766155956586596712 ~2018
9326472649118652945298312 ~2017
Home
4.888.230 digits
e-mail
25-06-29