Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
932724117594029...87988914 2023
9327298541918654597083912 ~2017
9327865813118655731626312 ~2017
9328728860318657457720712 ~2017
9329379871118658759742312 ~2017
9329441437755976648626312 ~2018
9330259807118660519614312 ~2017
9330775217918661550435912 ~2017
933086952194926...07563314 2023
9332781137355996686823912 ~2018
9333221276318666442552712 ~2017
9333572239118667144478312 ~2017
9334295227774674361821712 ~2018
9334671610174677372880912 ~2018
9334822395756008934374312 ~2018
9335062808318670125616712 ~2017
9335267467118670534934312 ~2017
9336340019918672680039912 ~2017
9336438985774691511885712 ~2018
9336871496318673742992712 ~2017
9337016875118674033750312 ~2017
9337372304318674744608712 ~2017
9337549705118675099410312 ~2017
9338231684318676463368712 ~2017
9338737616318677475232712 ~2017
Exponent Prime Factor Dig. Year
9339176150318678352300712 ~2017
9339305123918678610247912 ~2017
9339471919118678943838312 ~2017
9339603176318679206352712 ~2017
9340960433918681920867912 ~2017
9341121931118682243862312 ~2017
9341698672156050192032712 ~2018
9342155567918684311135912 ~2017
9342439766318684879532712 ~2017
9343123976318686247952712 ~2017
9343174111356059044667912 ~2018
9343649198318687298396712 ~2017
9344296748318688593496712 ~2017
9344322240156065933440712 ~2018
9345447470318690894940712 ~2017
9345790117118691580234312 ~2017
9345991155756075946934312 ~2018
9346583048318693166096712 ~2017
9346631429918693262859912 ~2017
9346675901918693351803912 ~2017
9346892726318693785452712 ~2017
9347357000974778856007312 ~2018
9347814958774782519669712 ~2018
9347831297974782650383312 ~2018
9348544483118697088966312 ~2017
Exponent Prime Factor Dig. Year
9349804661918699609323912 ~2017
9349816043918699632087912 ~2017
9349946666318699893332712 ~2017
9350987882318701975764712 ~2017
9351870524318703741048712 ~2017
9351906917918703813835912 ~2017
9351965473118703930946312 ~2017
9352114000174816912000912 ~2018
9352216399118704432798312 ~2017
9352343732318704687464712 ~2017
9352887752974823102023312 ~2018
935289228191827...18832715 2024
9353571476318707142952712 ~2017
9354145627118708291254312 ~2017
9355447863756132687182312 ~2018
9355575409118711150818312 ~2017
9356727367118713454734312 ~2017
9356781788318713563576712 ~2017
9357259193918714518387912 ~2017
9357500158156145000948712 ~2018
9357854972318715709944712 ~2017
9358549399756151296398312 ~2018
9358988519918717977039912 ~2017
9359461993174875695944912 ~2018
9359914985918719829971912 ~2017
Exponent Prime Factor Dig. Year
9360927887918721855775912 ~2017
9361352063918722704127912 ~2017
9362545939118725091878312 ~2017
9362730070774901840565712 ~2018
9362776115918725552231912 ~2017
9364256509118728513018312 ~2017
9364288549118728577098312 ~2017
9365060263118730120526312 ~2017
9365088431918730176863912 ~2017
9365302003118730604006312 ~2017
936557559431371...70055315 2024
9367163333918734326667912 ~2017
9367647957756205887746312 ~2018
9367771111118735542222312 ~2017
9367802294318735604588712 ~2017
9367866109118735732218312 ~2017
9368507329118737014658312 ~2017
9368805854318737611708712 ~2017
9369496235356216977411912 ~2018
9369643784318739287568712 ~2017
9370089745756220538474312 ~2018
937041626592083...75361715 2025
9371018674174968149392912 ~2018
9371469750156228818500712 ~2018
9372317069918744634139912 ~2017
Home
4.888.230 digits
e-mail
25-06-29