Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9238974967118477949934312 ~2017
9240377546318480755092712 ~2017
9240564519755443387118312 ~2018
9241201471173929611768912 ~2018
9241732735118483465470312 ~2017
9242204833118484409666312 ~2017
9242332289918484664579912 ~2017
9242636383118485272766312 ~2017
9242714108318485428216712 ~2017
9242778701918485557403912 ~2017
9242873803355457242819912 ~2018
9243508193918487016387912 ~2017
9243525518318487051036712 ~2017
9244105202318488210404712 ~2017
9244295772155465774632712 ~2018
9244511227118489022454312 ~2017
9245144030318490288060712 ~2017
9245479316318490958632712 ~2017
9245504264318491008528712 ~2017
9245665634318491331268712 ~2017
9247566197918495132395912 ~2017
9248051251118496102502312 ~2017
9248206177355489237063912 ~2018
9248937797355493626783912 ~2018
9249535169918499070339912 ~2017
Exponent Prime Factor Dig. Year
9249970567355499823403912 ~2018
9250120669118500241338312 ~2017
9250413380974003307047312 ~2018
9250429258174003434064912 ~2018
9251220865174009766920912 ~2018
9252515321918505030643912 ~2017
9253260055118506520110312 ~2017
9254146962155524881772712 ~2018
9254286554318508573108712 ~2017
9254406386318508812772712 ~2017
9254554079918509108159912 ~2017
9254808854318509617708712 ~2017
9255185561918510371123912 ~2017
9255293295755531759774312 ~2018
9255389258318510778516712 ~2017
9255560429918511120859912 ~2017
9255752521118511505042312 ~2017
9256022639974048181119312 ~2018
9257387300974059098407312 ~2018
9257505512318515011024712 ~2017
9258269564318516539128712 ~2017
9258475771118516951542312 ~2017
9258506683118517013366312 ~2017
9258888893918517777787912 ~2017
9259703725118519407450312 ~2017
Exponent Prime Factor Dig. Year
9260929433918521858867912 ~2017
9261020741918522041483912 ~2017
9261304123118522608246312 ~2017
9261882271118523764542312 ~2017
9261886991918523773983912 ~2017
9262938743918525877487912 ~2017
9263482898318526965796712 ~2017
9264327637118528655274312 ~2017
9265051327174120410616912 ~2018
926540726173984...22531114 2025
9265688552318531377104712 ~2017
9265891442318531782884712 ~2017
9267750557974142004463312 ~2018
9267817226318535634452712 ~2017
9268070937755608425626312 ~2018
9268664786318537329572712 ~2017
926869013834448...66384114 2023
9269130188318538260376712 ~2017
926919961074171...24815114 2024
9269219113118538438226312 ~2017
9269780023174158240184912 ~2018
9270018937118540037874312 ~2017
9270421463918540842927912 ~2017
9270443204318540886408712 ~2017
9272203118318544406236712 ~2017
Exponent Prime Factor Dig. Year
9272548859918545097719912 ~2017
9272566177118545132354312 ~2017
9272692193918545384387912 ~2017
9272890327118545780654312 ~2017
9273350336318546700672712 ~2017
9273918235118547836470312 ~2017
9274495789118548991578312 ~2017
9274600793355647604759912 ~2018
9275193815918550387631912 ~2017
9275247691174201981528912 ~2018
9275450224174203601792912 ~2018
9276280357174210242856912 ~2018
9276714931355660289587912 ~2018
927715008313888...48355315 2024
9277196125118554392250312 ~2017
9277676929774221415437712 ~2018
9277927931918555855863912 ~2017
9278086992155668521952712 ~2018
9278365927118556731854312 ~2017
9278615429918557230859912 ~2017
9278992267118557984534312 ~2017
9279038693918558077387912 ~2017
9279642109355677852655912 ~2018
9280413938318560827876712 ~2017
9280429501355682577007912 ~2018
Home
4.888.230 digits
e-mail
25-06-29