Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5688909362311377818724712 ~2015
5689322207911378644415912 ~2015
5689339984145514719872912 ~2016
5689713133111379426266312 ~2015
5689804067911379608135912 ~2015
5689966865911379933731912 ~2015
5690031473911380062947912 ~2015
569035461793744...38578314 2023
5690936723911381873447912 ~2015
5691404903945531239231312 ~2016
5692016385734152098314312 ~2016
5692058418134152350508712 ~2016
5692109701111384219402312 ~2015
5692630957111385261914312 ~2015
5693177881734159067290312 ~2016
5693693041111387386082312 ~2015
5694157514311388315028712 ~2015
5694394956756943949567112 ~2017
5694510781111389021562312 ~2015
5694534378134167206268712 ~2016
5694809989111389619978312 ~2015
5695223613734171341682312 ~2016
5695247210311390494420712 ~2015
5695313276311390626552712 ~2015
5695851721111391703442312 ~2015
Exponent Prime Factor Dig. Year
5696249954311392499908712 ~2015
5696986737734181920426312 ~2016
5697012812945576102503312 ~2016
5697352021111394704042312 ~2015
5697529952311395059904712 ~2015
5697577093111395154186312 ~2015
5698015067911396030135912 ~2015
5698999090745591992725712 ~2017
5699196391111398392782312 ~2015
5699286281911398572563912 ~2015
5699805392311399610784712 ~2015
5700110120311400220240712 ~2015
570025316393146...46472914 2023
570033633532542...05543914 2024
5700403429111400806858312 ~2015
5700719407111401438814312 ~2015
5700817157911401634315912 ~2015
5701003327111402006654312 ~2015
5701202537911402405075912 ~2015
5701236233911402472467912 ~2015
5701459613911402919227912 ~2015
5701523396311403046792712 ~2015
5701680739145613445912912 ~2017
5701961765911403923531912 ~2015
5702076427779829069987912 ~2017
Exponent Prime Factor Dig. Year
5702170285111404340570312 ~2015
5702327545111404655090312 ~2015
5702350640945618805127312 ~2017
5702765948311405531896712 ~2015
5703006287911406012575912 ~2015
5703778634311407557268712 ~2015
5703819421111407638842312 ~2015
5704983457111409966914312 ~2015
5705098004311410196008712 ~2015
570514268931551...11489714 2023
5705144378311410288756712 ~2015
5705299370311410598740712 ~2015
5705308880311410617760712 ~2015
5705314097911410628195912 ~2015
5705438143111410876286312 ~2015
5705642585911411285171912 ~2015
5705896909111411793818312 ~2015
5706576704311413153408712 ~2015
5706938369911413876739912 ~2015
5706969857911413939715912 ~2015
5706992143111413984286312 ~2015
5707099411111414198822312 ~2015
5707282427911414564855912 ~2015
5707366346311414732692712 ~2015
5707599683911415199367912 ~2015
Exponent Prime Factor Dig. Year
5707617397111415234794312 ~2015
5707974483734247846902312 ~2016
5708155988311416311976712 ~2015
5708343493111416686986312 ~2015
5708445811111416891622312 ~2015
5708657699911417315399912 ~2015
5708658151111417316302312 ~2015
5708683823911417367647912 ~2015
5709895398134259372388712 ~2016
5709957404311419914808712 ~2015
5710196696311420393392712 ~2015
5710201973911420403947912 ~2015
5710741471111421482942312 ~2015
5711724398311423448796712 ~2015
5711728012745693824101712 ~2017
5711899601911423799203912 ~2015
5711906425779966689959912 ~2017
5712040416757120404167112 ~2017
5712233629111424467258312 ~2015
5712555284311425110568712 ~2015
5712564860311425129720712 ~2015
5712740846311425481692712 ~2015
5712786101911425572203912 ~2015
5713414421911426828843912 ~2015
5713455691111426911382312 ~2015
Home
5.037.460 digits
e-mail
25-09-07