Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9096843773354581062639912 ~2018
9096861085118193722170312 ~2017
9097718099918195436199912 ~2017
9097875041918195750083912 ~2017
9098394377918196788755912 ~2017
9098590543118197181086312 ~2017
9098698889918197397779912 ~2017
9099444854318198889708712 ~2017
9099629780318199259560712 ~2017
9099635281754597811690312 ~2018
9099635503118199271006312 ~2017
9100014170318200028340712 ~2017
9100064329118200128658312 ~2017
9100951397918201902795912 ~2017
9101177381918202354763912 ~2017
9101472299918202944599912 ~2017
9101600552318203201104712 ~2017
9101736932318203473864712 ~2017
9101929056154611574336712 ~2018
9102689408318205378816712 ~2017
9103635986318207271972712 ~2017
9104289607118208579214312 ~2017
9104494999118208989998312 ~2017
910463361415808...45795914 2024
9104723074154628338444712 ~2018
Exponent Prime Factor Dig. Year
9105228998318210457996712 ~2017
9105910664318211821328712 ~2017
9108103895918216207791912 ~2017
9109037036318218074072712 ~2017
9109176848318218353696712 ~2017
9110194519118220389038312 ~2017
9111304265918222608531912 ~2017
9112654949918225309899912 ~2017
9112685858318225371716712 ~2017
9112885747118225771494312 ~2017
9112962391118225924782312 ~2017
9113116237754678697426312 ~2018
9113199353918226398707912 ~2017
9113838053972910704431312 ~2018
9114070862318228141724712 ~2017
9114689090318229378180712 ~2017
9115004879354690029275912 ~2018
9115017515918230035031912 ~2017
9115234463918230468927912 ~2017
9115575668318231151336712 ~2017
9115839932318231679864712 ~2017
911690502132552...05964114 2024
9116930983118233861966312 ~2017
9117188423918234376847912 ~2017
9118360321354710161927912 ~2018
Exponent Prime Factor Dig. Year
9118658930318237317860712 ~2017
9119079439118238158878312 ~2017
9119248045118238496090312 ~2017
9119390744318238781488712 ~2017
9119934293918239868587912 ~2017
9120231605918240463211912 ~2017
9120383690318240767380712 ~2017
9120444529118240889058312 ~2017
9121787989118243575978312 ~2017
9122244671354733468027912 ~2018
9122280854318244561708712 ~2017
9122431859918244863719912 ~2017
9123098147354738588883912 ~2018
9123159977918246319955912 ~2017
9123383527118246767054312 ~2017
9124160017118248320034312 ~2017
9124195861118248391722312 ~2017
9124558127918249116255912 ~2017
9125799775754754798654312 ~2018
912746396711533...46472914 2024
9128271157118256542314312 ~2017
9128300081354769800487912 ~2018
9128828312318257656624712 ~2017
9129467495918258934991912 ~2017
9129499447354776996683912 ~2018
Exponent Prime Factor Dig. Year
9131645657918263291315912 ~2017
913166574493287...68164114 2024
9133219232318266438464712 ~2017
913362463332612...45123914 2024
9134085625118268171250312 ~2017
9134315335118268630670312 ~2017
9134357320154806143920712 ~2018
9135939020318271878040712 ~2017
9137057845118274115690312 ~2017
9137895035918275790071912 ~2017
9138169939354829019635912 ~2018
913860443592723...21898314 2024
9138705259118277410518312 ~2017
9138935612973111484903312 ~2018
9139523070154837138420712 ~2018
9139723472318279446944712 ~2017
9140515247354843091483912 ~2018
9140746364318281492728712 ~2017
9141339250173130714000912 ~2018
9141387733754848326402312 ~2018
9141523996773132191973712 ~2018
9141943189118283886378312 ~2017
9142643276318285286552712 ~2017
9142924889918285849779912 ~2017
9143747129918287494259912 ~2017
Home
4.888.230 digits
e-mail
25-06-29