Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9144876346773159010773712 ~2018
9145272625118290545250312 ~2017
9145279909354871679455912 ~2018
9145292075918290584151912 ~2017
9145688378318291376756712 ~2017
9145773709754874642258312 ~2018
9145844471918291688943912 ~2017
9146012161118292024322312 ~2017
9146845807173174766456912 ~2018
9147121729118294243458312 ~2017
9147419606318294839212712 ~2017
9147505807118295011614312 ~2017
9147764918318295529836712 ~2017
9148207811918296415623912 ~2017
9148449919118296899838312 ~2017
9148845844773190766757712 ~2018
9149072675918298145351912 ~2017
9149339716154896038296712 ~2018
9150356696318300713392712 ~2017
9150700795118301401590312 ~2017
9151626499118303252998312 ~2017
9151653307118303306614312 ~2017
9151702265918303404531912 ~2017
9151743755918303487511912 ~2017
9152019647918304039295912 ~2017
Exponent Prime Factor Dig. Year
9152375801918304751603912 ~2017
9154563500318309127000712 ~2017
9155230526973241844215312 ~2018
9155970752318311941504712 ~2017
9155985668318311971336712 ~2017
9156075092318312150184712 ~2017
9158350237118316700474312 ~2017
9158421217118316842434312 ~2017
9158442139118316884278312 ~2017
9158803615173270428920912 ~2018
9159760051118319520102312 ~2017
9160361719118320723438312 ~2017
9160565855973284526847312 ~2018
916236789972345...82323314 2024
9162461357918324922715912 ~2017
9162497233118324994466312 ~2017
9163352176173306817408912 ~2018
9164472779918328945559912 ~2017
9165221953118330443906312 ~2017
9165781922318331563844712 ~2017
9166885687173335085496912 ~2018
9167283506318334567012712 ~2017
9167310046155003860276712 ~2018
9167659512155005957072712 ~2018
9168589946318337179892712 ~2017
Exponent Prime Factor Dig. Year
9169027760318338055520712 ~2017
9170872484318341744968712 ~2017
9170946164318341892328712 ~2017
9171160049973369280399312 ~2018
9171261895173370095160912 ~2018
9171403801118342807602312 ~2017
9171744659918343489319912 ~2017
9172692205118345384410312 ~2017
9172968218318345936436712 ~2017
9174041690318348083380712 ~2017
9174676879118349353758312 ~2017
9175783324155054699944712 ~2018
9175928252318351856504712 ~2017
9177491858318354983716712 ~2017
9177629845173421038760912 ~2018
9177892661918355785323912 ~2017
9178328851118356657702312 ~2017
9178727353118357454706312 ~2017
9179082341918358164683912 ~2017
9179182093118358364186312 ~2017
9179310673755075864042312 ~2018
9179546447918359092895912 ~2017
9179592409118359184818312 ~2017
9179900065118359800130312 ~2017
9180164549918360329099912 ~2017
Exponent Prime Factor Dig. Year
9180236105973441888847312 ~2018
9180440111918360880223912 ~2017
918150740813580...89159114 2023
9183007387118366014774312 ~2017
9183386115755100316694312 ~2018
9183773533118367547066312 ~2017
9183864351755103186110312 ~2018
9184268629755105611778312 ~2018
9184389599918368779199912 ~2017
9184601977355107611863912 ~2018
918524571731019...46203115 2023
918612729619094...23139114 2025
9186712004318373424008712 ~2017
9187713923918375427847912 ~2017
9188126134173505009072912 ~2018
9188265836318376531672712 ~2017
9188291027918376582055912 ~2017
9188628158973509025271312 ~2018
9188634133118377268266312 ~2017
9188676001118377352002312 ~2017
9188954411918377908823912 ~2017
9189045560318378091120712 ~2017
9189385136318378770272712 ~2017
9189907514318379815028712 ~2017
9190126433355140758599912 ~2018
Home
4.888.230 digits
e-mail
25-06-29