Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
13940358803927880717607912 ~2018
13940556290327881112580712 ~2018
13941264989927882529979912 ~2018
13943443177127886886354312 ~2018
13944305585927888611171912 ~2018
13944607591127889215182312 ~2018
13945828331927891656663912 ~2018
13946181866327892363732712 ~2018
13947171113927894342227912 ~2018
13950206033927900412067912 ~2018
13950234967127900469934312 ~2018
13953879182327907758364712 ~2018
1395466143138037...84428914 2024
13954760039927909520079912 ~2018
13955221394327910442788712 ~2018
13957307309927914614619912 ~2018
13957860995927915721991912 ~2018
13958258725127916517450312 ~2018
13958679773927917359547912 ~2018
13959457718327918915436712 ~2018
13960206002327920412004712 ~2018
13961314261127922628522312 ~2018
13961417438327922834876712 ~2018
13963793120327927586240712 ~2018
13964370464327928740928712 ~2018
Exponent Prime Factor Dig. Year
13964519387927929038775912 ~2018
13964624821127929249642312 ~2018
13965579167927931158335912 ~2018
13965613226327931226452712 ~2018
13965921560327931843120712 ~2018
13966076357927932152715912 ~2018
13967802953927935605907912 ~2018
13969690031927939380063912 ~2018
13971490595927942981191912 ~2018
13972537633127945075266312 ~2018
13973251778327946503556712 ~2018
13973277445127946554890312 ~2018
13974144727127948289454312 ~2018
13974568415927949136831912 ~2018
13976998568327953997136712 ~2018
13977324415127954648830312 ~2018
13977963301127955926602312 ~2018
13980118009127960236018312 ~2018
13981052978327962105956712 ~2018
13981601065127963202130312 ~2018
13982375963927964751927912 ~2018
13982511968327965023936712 ~2018
13982901469127965802938312 ~2018
13984942657127969885314312 ~2018
13986612437927973224875912 ~2018
Exponent Prime Factor Dig. Year
13988036876327976073752712 ~2018
13989003596327978007192712 ~2018
13989916135127979832270312 ~2018
13989942608327979885216712 ~2018
13992822505127985645010312 ~2018
13996940125127993880250312 ~2018
13997525858327995051716712 ~2018
13999202665127998405330312 ~2018
13999755200327999510400712 ~2018
13999759082327999518164712 ~2018
14000106935928000213871912 ~2018
14001882145128003764290312 ~2018
14001989987928003979975912 ~2018
14002168909128004337818312 ~2018
14002739480328005478960712 ~2018
1400386635772352...48093714 2024
14004542873928009085747912 ~2018
14004875605128009751210312 ~2018
14005323463128010646926312 ~2018
14007050387928014100775912 ~2018
14012660894328025321788712 ~2018
14013802892328027605784712 ~2018
14013877633128027755266312 ~2018
14014460761128028921522312 ~2018
14015483294328030966588712 ~2018
Exponent Prime Factor Dig. Year
14015521195128031042390312 ~2018
1401622186333588...97004914 2023
14017447855128034895710312 ~2018
14018817776328037635552712 ~2018
14019370118328038740236712 ~2018
14019715273128039430546312 ~2018
14023410488328046820976712 ~2018
14024018213928048036427912 ~2018
14025477293928050954587912 ~2018
14027088092328054176184712 ~2018
14027553977928055107955912 ~2018
14032625576328065251152712 ~2018
14032736717928065473435912 ~2018
14034575191128069150382312 ~2018
14036269219128072538438312 ~2018
14037067069128074134138312 ~2018
1403845765333453...82711914 2023
14042666797128085333594312 ~2018
14042756111928085512223912 ~2018
14045411165928090822331912 ~2018
14045803549128091607098312 ~2018
14047484000328094968000712 ~2018
14048757569928097515139912 ~2018
14050607431128101214862312 ~2018
14052361763928104723527912 ~2018
Home
4.724.182 digits
e-mail
25-04-13