Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
8103391260781033912607112 ~2018
8103540125916207080251912 ~2016
8103813131916207626263912 ~2016
8104144452148624866712712 ~2017
8104299365916208598731912 ~2016
8104490429916208980859912 ~2016
8104874267916209748535912 ~2016
8106237410316212474820712 ~2016
8106800587116213601174312 ~2016
8106827872148640967232712 ~2017
8106842858316213685716712 ~2016
8107327223916214654447912 ~2016
8107338049116214676098312 ~2016
8107587587916215175175912 ~2016
8107973830148647842980712 ~2017
8108151187764865209501712 ~2018
8108795669916217591339912 ~2016
8108985247116217970494312 ~2016
8109183001164873464008912 ~2018
8109657236316219314472712 ~2016
8110814815116221629630312 ~2016
8110963640316221927280712 ~2016
811329020278243...45943314 2024
8113326425916226652851912 ~2016
8113599169116227198338312 ~2016
Exponent Prime Factor Dig. Year
8113968003181139680031112 ~2018
8113998800316227997600712 ~2016
8114157791964913262335312 ~2018
8114325145164914601160912 ~2018
8114351671116228703342312 ~2016
8114378513916228757027912 ~2016
8114824057116229648114312 ~2016
8115292739348691756435912 ~2017
8115442826316230885652712 ~2016
8115607939764924863517712 ~2018
8115825178148694951068712 ~2017
8116084684381160846843112 ~2018
8116352816316232705632712 ~2016
8116654447116233308894312 ~2016
8116682591916233365183912 ~2016
8116865245116233730490312 ~2016
8116980960781169809607112 ~2018
8117303198316234606396712 ~2016
8117385193116234770386312 ~2016
8117445359916234890719912 ~2016
8117450923116234901846312 ~2016
8117504535181175045351112 ~2018
8117640403116235280806312 ~2016
8117841547116235683094312 ~2016
8117900060316235800120712 ~2016
Exponent Prime Factor Dig. Year
8117914783164943318264912 ~2018
8118133735764945069885712 ~2018
8118147866316236295732712 ~2016
8118287924316236575848712 ~2016
8118290107116236580214312 ~2016
8118967571916237935143912 ~2016
811934211679873...13907314 2023
8120425532316240851064712 ~2016
8122062101916244124203912 ~2016
8122442705916244885411912 ~2016
8122958993916245917987912 ~2016
8123069468316246138936712 ~2016
8123136590316246273180712 ~2016
8123141094148738846564712 ~2017
8123344963116246689926312 ~2016
8123917414381239174143112 ~2018
8124625038148747750228712 ~2017
8125276826316250553652712 ~2016
8126448590316252897180712 ~2016
8126722340316253444680712 ~2016
8127391766316254783532712 ~2016
8128003928316256007856712 ~2016
8128325827116256651654312 ~2016
8128595819916257191639912 ~2016
8128715623116257431246312 ~2016
Exponent Prime Factor Dig. Year
8129085991165032687928912 ~2018
8129882315916259764631912 ~2016
8130343324148782059944712 ~2017
8130628451916261256903912 ~2016
8130799786148784798716712 ~2017
8131061323116262122646312 ~2016
8131247431116262494862312 ~2016
813141355573496...28951114 2024
8132201519916264403039912 ~2016
8132503777116265007554312 ~2016
8132677640316265355280712 ~2016
8133116697748798700186312 ~2017
813347053393448...06373714 2024
813470961613888...96495914 2023
8134934835748809609014312 ~2017
8135181615748811089694312 ~2017
8135461496316270922992712 ~2016
8135577037116271154074312 ~2016
8136233852316272467704712 ~2016
8136331094316272662188712 ~2016
8136366706148818200236712 ~2017
8136901903765095215229712 ~2018
8137052083116274104166312 ~2016
8137671662316275343324712 ~2016
8137895579916275791159912 ~2016
Home
4.888.230 digits
e-mail
25-06-29