Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
18784352329137568704658312 ~2019
1878970106414810...72409714 2024
18790528646337581057292712 ~2019
18791015360337582030720712 ~2019
18791326133937582652267912 ~2019
1879196242935374...54779914 2023
18792781520337585563040712 ~2019
18794982938337589965876712 ~2019
18795003967137590007934312 ~2019
18795254369937590508739912 ~2019
18795409409937590818819912 ~2019
18795697658337591395316712 ~2019
18795706442337591412884712 ~2019
1879572970192706...77073714 2024
1879807598293800...37423915 2023
18798175880337596351760712 ~2019
18801222299937602444599912 ~2019
18802463171937604926343912 ~2019
18802531747137605063494312 ~2019
18802790965137605581930312 ~2019
1880306989038875...88221714 2024
18803616617937607233235912 ~2019
18803698376337607396752712 ~2019
18804230911137608461822312 ~2019
18804423062337608846124712 ~2019
Exponent Prime Factor Dig. Year
1880770754692271...16655315 2025
18808399337937616798675912 ~2019
18808539326337617078652712 ~2019
18810990023937621980047912 ~2019
18813769892337627539784712 ~2019
18813837319137627674638312 ~2019
18814684967937629369935912 ~2019
18814964558337629929116712 ~2019
18818478620337636957240712 ~2019
18819219497937638438995912 ~2019
18819616645137639233290312 ~2019
18820533749937641067499912 ~2019
18820653302337641306604712 ~2019
18822480044337644960088712 ~2019
18822522151137645044302312 ~2019
18822893191137645786382312 ~2019
18823918555137647837110312 ~2019
18824395387137648790774312 ~2019
18824675984337649351968712 ~2019
18825006014337650012028712 ~2019
18826915555137653831110312 ~2019
18828308738337656617476712 ~2019
18828709151937657418303912 ~2019
18831560681937663121363912 ~2019
18832416853137664833706312 ~2019
Exponent Prime Factor Dig. Year
18833890265937667780531912 ~2019
18834628805937669257611912 ~2019
18835231819137670463638312 ~2019
18835681529937671363059912 ~2019
18835799639937671599279912 ~2019
1883665063971145...88937715 2023
18837319952337674639904712 ~2019
18837451073937674902147912 ~2019
18838020542337676041084712 ~2019
18839086208337678172416712 ~2019
18840101186337680202372712 ~2019
18840256976337680513952712 ~2019
18842395025937684790051912 ~2019
18844469564337688939128712 ~2019
18846381817137692763634312 ~2019
18846804581937693609163912 ~2019
18847333931937694667863912 ~2019
1885451568475580...42671314 2023
18854904193137709808386312 ~2019
18855020083137710040166312 ~2019
18857467766337714935532712 ~2019
18858230923137716461846312 ~2019
18858314719137716629438312 ~2019
18862500737937725001475912 ~2019
18865231712337730463424712 ~2019
Exponent Prime Factor Dig. Year
18865424726337730849452712 ~2019
18865741543137731483086312 ~2019
18867827156337735654312712 ~2019
18868450321137736900642312 ~2019
18872075111937744150223912 ~2019
18873415619937746831239912 ~2019
18873917618337747835236712 ~2019
1887421667772378...01390314 2024
18874843429137749686858312 ~2019
18875166793137750333586312 ~2019
1887556271638758...00363314 2023
1887630201534643...95763914 2023
18878730956337757461912712 ~2019
18880048379937760096759912 ~2019
18880960133937761920267912 ~2019
18882001145937764002291912 ~2019
18883931767137767863534312 ~2019
18884228750337768457500712 ~2019
18888666749937777333499912 ~2019
18889363129137778726258312 ~2019
18891867019137783734038312 ~2019
18892478495937784956991912 ~2019
18896615447937793230895912 ~2019
18897222440337794444880712 ~2019
18898888073937797776147912 ~2019
Home
4.724.182 digits
e-mail
25-04-13