Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
5930284121911860568243912 ~2015
5930469252759304692527112 ~2017
5930566829335583400975912 ~2016
5930638690135583832140712 ~2016
5930710867111861421734312 ~2015
5930748109111861496218312 ~2015
5930998526311861997052712 ~2015
5931194306311862388612712 ~2015
5931545324311863090648712 ~2015
5931971413111863942826312 ~2015
5932336381111864672762312 ~2015
5932520105911865040211912 ~2015
5932630439911865260879912 ~2015
5933057609911866115219912 ~2015
5933520276135601121656712 ~2016
5933833667911867667335912 ~2015
5934689584747477516677712 ~2017
5935390243111870780486312 ~2015
5935394139735612364838312 ~2016
5935513820311871027640712 ~2015
5935885664311871771328712 ~2015
5936136074311872272148712 ~2015
5936371859335618231155912 ~2016
5937038393911874076787912 ~2015
5937717572311875435144712 ~2015
Exponent Prime Factor Dig. Year
5937740831911875481663912 ~2015
5938101605911876203211912 ~2015
5938172941111876345882312 ~2015
5938185029911876370059912 ~2015
5938738726135632432356712 ~2016
5938906033111877812066312 ~2015
5939292600135635755600712 ~2016
5939297557111878595114312 ~2015
5940607231111881214462312 ~2015
5940621776311881243552712 ~2015
5940905525911881811051912 ~2015
5941016515111882033030312 ~2015
5941168459735647010758312 ~2016
5941291945111882583890312 ~2015
5941347319111882694638312 ~2015
5941575839335649455035912 ~2016
5941733713111883467426312 ~2015
5941876121911883752243912 ~2015
5942160613735652963682312 ~2016
5942572774135655436644712 ~2016
5942580200311885160400712 ~2015
5942935406311885870812712 ~2015
5942940284311885880568712 ~2015
5944177855111888355710312 ~2015
5944276361911888552723912 ~2015
Exponent Prime Factor Dig. Year
5944520768311889041536712 ~2015
5945054453911890108907912 ~2015
5945112289111890224578312 ~2015
5945347304311890694608712 ~2015
5945486711335672920267912 ~2016
5945519267911891038535912 ~2015
594632934312140...63516114 2023
5946340478311892680956712 ~2015
5946444989911892889979912 ~2015
5947198333111894396666312 ~2015
5947205761111894411522312 ~2015
5947400527111894801054312 ~2015
5947443031111894886062312 ~2015
5947501225111895002450312 ~2015
5947702706311895405412712 ~2015
5947901463159479014631112 ~2017
5947961716359479617163112 ~2017
5948059045111896118090312 ~2015
5948101069111896202138312 ~2015
5948171605111896343210312 ~2015
5948531593111897063186312 ~2015
5948623752135691742512712 ~2016
5948739401911897478803912 ~2015
5949050216311898100432712 ~2015
5949537589735697225538312 ~2016
Exponent Prime Factor Dig. Year
5949551420311899102840712 ~2015
5949732719335698396315912 ~2016
5949815509111899631018312 ~2015
5950557991111901115982312 ~2015
5950735405111901470810312 ~2015
5950817147335704902883912 ~2016
595102245832100...77799115 2025
5951174840311902349680712 ~2015
5951623285111903246570312 ~2015
5951810359747614482877712 ~2017
5951827789111903655578312 ~2015
5951892431911903784863912 ~2015
5952022861111904045722312 ~2015
5952095350147616762800912 ~2017
5952392125111904784250312 ~2015
5953308614311906617228712 ~2015
5953528043335721168259912 ~2016
5954027174311908054348712 ~2015
5954061869911908123739912 ~2015
5954071106311908142212712 ~2015
5954266603111908533206312 ~2015
5954811902311909623804712 ~2015
5954849021911909698043912 ~2015
5954910679111909821358312 ~2015
5954990363911909980727912 ~2015
Home
4.888.230 digits
e-mail
25-06-29