Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
9478566050318957132100712 ~2017
9478666253918957332507912 ~2017
9479020520318958041040712 ~2017
9479892343118959784686312 ~2017
9480494864318960989728712 ~2017
9480631436318961262872712 ~2017
9480635284156883811704712 ~2018
948114615972503...86160914 2024
9481727359118963454718312 ~2017
9481846946318963693892712 ~2017
9482724133175861793064912 ~2018
9482878844318965757688712 ~2017
9483143366318966286732712 ~2017
9483269015918966538031912 ~2017
9483348289756900089738312 ~2018
9483820079918967640159912 ~2017
9483907037918967814075912 ~2017
9484130777918968261555912 ~2017
9485583986318971167972712 ~2017
9485792071118971584142312 ~2017
9485902039356915412235912 ~2018
9486109476156916656856712 ~2018
9486570121118973140242312 ~2017
9489504301118979008602312 ~2017
9490689907118981379814312 ~2017
Exponent Prime Factor Dig. Year
9490724486318981448972712 ~2017
9490813381175926507048912 ~2018
9491426960318982853920712 ~2017
9491918857118983837714312 ~2017
9491993936318983987872712 ~2017
9492341231918984682463912 ~2017
9492542909918985085819912 ~2017
9492575570318985151140712 ~2017
9494248838318988497676712 ~2017
949426168931615...95188715 2024
9494397401918988794803912 ~2017
9494659400318989318800712 ~2017
9495181129118990362258312 ~2017
9495525665918991051331912 ~2017
9495581215118991162430312 ~2017
9495647183918991294367912 ~2017
9495787886318991575772712 ~2017
9496228090156977368540712 ~2018
9496264153118992528306312 ~2017
9497867953118995735906312 ~2017
9498520691356991124147912 ~2018
9498631199918997262399912 ~2017
949888311292963...31224914 2024
9499395257975995162063312 ~2018
9499643951918999287903912 ~2017
Exponent Prime Factor Dig. Year
9499782787118999565574312 ~2017
9499791197918999582395912 ~2017
9499859948318999719896712 ~2017
9500736991119001473982312 ~2017
9501304808319002609616712 ~2017
9501363983919002727967912 ~2017
9502268071357013608427912 ~2018
9502301534976018412279312 ~2018
9502855981757017135890312 ~2018
9503137951119006275902312 ~2017
9503654509119007309018312 ~2017
9504181557757025089346312 ~2018
9504258880157025553280712 ~2018
950498647337737...89266314 2025
9505119668319010239336712 ~2017
9505143313119010286626312 ~2017
9505446493119010892986312 ~2017
9505954607919011909215912 ~2017
9505968283119011936566312 ~2017
9506748038319013496076712 ~2017
9508009022319016018044712 ~2017
9509010653357054063919912 ~2018
9509545187357057271123912 ~2018
9509839499919019678999912 ~2017
9510443282319020886564712 ~2017
Exponent Prime Factor Dig. Year
9510590771976084726175312 ~2018
9511427564319022855128712 ~2017
9512268493119024536986312 ~2017
9512588300319025176600712 ~2017
9513140404176105123232912 ~2018
9513476918319026953836712 ~2017
9513554713119027109426312 ~2017
9513799844319027599688712 ~2017
9515671675119031343350312 ~2017
9515851813119031703626312 ~2017
9515941889919031883779912 ~2017
951637331634111...72641714 2025
9516542828319033085656712 ~2017
9517026164319034052328712 ~2017
9517979159919035958319912 ~2017
9518095873119036191746312 ~2017
9518243589757109461538312 ~2018
9518849909919037699819912 ~2017
9519393403757116360422312 ~2018
9519807625119039615250312 ~2017
9520241911119040483822312 ~2017
9520357418319040714836712 ~2017
9521270327976170162623312 ~2018
9521462693919042925387912 ~2017
9521668178319043336356712 ~2017
Home
4.873.271 digits
e-mail
25-06-22