Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
1753073804533166...09811915 2023
17531110309135062220618312 ~2019
17531909081935063818163912 ~2019
17532918266335065836532712 ~2019
1753404257531683...87228914 2024
17534721869935069443739912 ~2019
17534746736335069493472712 ~2019
17535942319135071884638312 ~2019
17537411003935074822007912 ~2019
17538770600335077541200712 ~2019
17540646523135081293046312 ~2019
17541572815135083145630312 ~2019
17541876194335083752388712 ~2019
17545054169935090108339912 ~2019
17545826605135091653210312 ~2019
17546952115135093904230312 ~2019
17547063553135094127106312 ~2019
1754770388833544...85436714 2023
17551801922335103603844712 ~2019
17551848829135103697658312 ~2019
17553100562335106201124712 ~2019
17554500097135109000194312 ~2019
17556765731935113531463912 ~2019
17557259335135114518670312 ~2019
17560203938335120407876712 ~2019
Exponent Prime Factor Dig. Year
17560629673135121259346312 ~2019
17561330663935122661327912 ~2019
17561605489135123210978312 ~2019
17561787247135123574494312 ~2019
17564690459935129380919912 ~2019
17571113323135142226646312 ~2019
17571717653935143435307912 ~2019
17575308350335150616700712 ~2019
17576951645935153903291912 ~2019
17579485741135158971482312 ~2019
17581373005135162746010312 ~2019
17581847378335163694756712 ~2019
17583222302335166444604712 ~2019
17587845085135175690170312 ~2019
17588552495935177104991912 ~2019
17589399163135178798326312 ~2019
17591004095935182008191912 ~2019
17592522557935185045115912 ~2019
17593783129135187566258312 ~2019
1759434391372779...38364714 2024
17595120758335190241516712 ~2019
17595364891135190729782312 ~2019
17595792083935191584167912 ~2019
17596897945135193795890312 ~2019
17597971643935195943287912 ~2019
Exponent Prime Factor Dig. Year
1759809725991830...15029714 2024
17600363653135200727306312 ~2019
17600708983135201417966312 ~2019
17600741168335201482336712 ~2019
17601294254335202588508712 ~2019
17602969789135205939578312 ~2019
17604843535135209687070312 ~2019
17606522773135213045546312 ~2019
17606958901135213917802312 ~2019
17607674987935215349975912 ~2019
17608256471935216512943912 ~2019
17608387826335216775652712 ~2019
17610252283135220504566312 ~2019
17611963429135223926858312 ~2019
17611976023135223952046312 ~2019
17612437633135224875266312 ~2019
1761403889811514...45236714 2024
17614082093935228164187912 ~2019
17614721531935229443063912 ~2019
17614907459935229814919912 ~2019
17616227834335232455668712 ~2019
17617005967135234011934312 ~2019
17618548151935237096303912 ~2019
17620003238335240006476712 ~2019
1762349406497317...57464915 2025
Exponent Prime Factor Dig. Year
17624960537935249921075912 ~2019
17627247032335254494064712 ~2019
1762786430631124...56102317 2023
17629227223135258454446312 ~2019
17629328365135258656730312 ~2019
17631010196335262020392712 ~2019
17632203685135264407370312 ~2019
1763358122392151...09315914 2024
17633654816335267309632712 ~2019
17636441977135272883954312 ~2019
17636569205935273138411912 ~2019
17638770599935277541199912 ~2019
17640074347135280148694312 ~2019
17645277571135290555142312 ~2019
17646659815135293319630312 ~2019
17646998393935293996787912 ~2019
17647426159135294852318312 ~2019
17647739197135295478394312 ~2019
17647772645935295545291912 ~2019
17649024197935298048395912 ~2019
17649142127935298284255912 ~2019
17650802419135301604838312 ~2019
17651272925935302545851912 ~2019
17653401653935306803307912 ~2019
17654058595135308117190312 ~2019
Home
4.724.182 digits
e-mail
25-04-13