Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
17169404095134338808190312 ~2019
17170128566334340257132712 ~2019
17170322561934340645123912 ~2019
17170820807934341641615912 ~2019
17172177305934344354611912 ~2019
17172181052334344362104712 ~2019
17172667745934345335491912 ~2019
17176185655134352371310312 ~2019
17176513058334353026116712 ~2019
17178117349134356234698312 ~2019
17179581955134359163910312 ~2019
17180417264334360834528712 ~2019
17183860169934367720339912 ~2019
17184320660334368641320712 ~2019
17184675325134369350650312 ~2019
17184947306334369894612712 ~2019
17185362979134370725958312 ~2019
17186759012334373518024712 ~2019
17188291741134376583482312 ~2019
17188383818334376767636712 ~2019
17191121573934382243147912 ~2019
17193410333934386820667912 ~2019
17195722811934391445623912 ~2019
17196636577134393273154312 ~2019
17197239997134394479994312 ~2019
Exponent Prime Factor Dig. Year
17199436303134398872606312 ~2019
17199807200334399614400712 ~2019
17201462431134402924862312 ~2019
17203221197934406442395912 ~2019
17203885951134407771902312 ~2019
17204556209934409112419912 ~2019
17205449395134410898790312 ~2019
17206511155134413022310312 ~2019
17207095991934414191983912 ~2019
17209328701134418657402312 ~2019
17209701121134419402242312 ~2019
17209761383934419522767912 ~2019
17212093037934424186075912 ~2019
1721659186674545...52808914 2023
17218497289134436994578312 ~2019
17221883791134443767582312 ~2019
17221933829934443867659912 ~2019
17224066415934448132831912 ~2019
17224938908334449877816712 ~2019
1722512650791791...56821714 2024
17226271447134452542894312 ~2019
17227244414334454488828712 ~2019
1722824902211343...23723914 2024
17228542399134457084798312 ~2019
17229166627134458333254312 ~2019
Exponent Prime Factor Dig. Year
17230484750334460969500712 ~2019
17230918943934461837887912 ~2019
17234978120334469956240712 ~2019
17235660439134471320878312 ~2019
17235755534334471511068712 ~2019
17235892981134471785962312 ~2019
17237480576334474961152712 ~2019
1723802501391313...60591915 2023
17238213554334476427108712 ~2019
17239250977134478501954312 ~2019
17239615091934479230183912 ~2019
17240381033934480762067912 ~2019
17241127052334482254104712 ~2019
17241648235134483296470312 ~2019
17241721766334483443532712 ~2019
17241812717934483625435912 ~2019
17242630859934485261719912 ~2019
1724282375634586...19175914 2023
17242958309934485916619912 ~2019
17245260224334490520448712 ~2019
17245544936334491089872712 ~2019
1724674318792104...68923914 2024
17246753792334493507584712 ~2019
17247621716334495243432712 ~2019
17247971597934495943195912 ~2019
Exponent Prime Factor Dig. Year
17248835707134497671414312 ~2019
17250148154334500296308712 ~2019
17250349586334500699172712 ~2019
17250449831934500899663912 ~2019
17253605243934507210487912 ~2019
17253697721934507395443912 ~2019
17254065383934508130767912 ~2019
17254850909934509701819912 ~2019
1725650640434555...90735314 2024
17256844819134513689638312 ~2019
17256983285934513966571912 ~2019
17258821064334517642128712 ~2019
17260287065934520574131912 ~2019
17260338482334520676964712 ~2019
17261650484334523300968712 ~2019
17262511939134525023878312 ~2019
1726392415735148...37068715 2023
17265567221934531134443912 ~2019
17268332411934536664823912 ~2019
17268395198334536790396712 ~2019
17268877229934537754459912 ~2019
17270110093134540220186312 ~2019
17271423961134542847922312 ~2019
17272803331134545606662312 ~2019
17274578438334549156876712 ~2019
Home
4.724.182 digits
e-mail
25-04-13