Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
16104493735132208987470312 ~2019
16104512624332209025248712 ~2019
16104918829132209837658312 ~2019
16105458977932210917955912 ~2019
16106502593932213005187912 ~2019
16108825243132217650486312 ~2019
16110368711932220737423912 ~2019
16110473665132220947330312 ~2019
16116024188332232048376712 ~2019
16117483148332234966296712 ~2019
16121512919932243025839912 ~2019
16122767876332245535752712 ~2019
16124306480332248612960712 ~2019
16127051876332254103752712 ~2019
16127809604332255619208712 ~2019
16128975553132257951106312 ~2019
16130272171132260544342312 ~2019
16130957657932261915315912 ~2019
16132213988332264427976712 ~2019
16132705093132265410186312 ~2019
16132779374332265558748712 ~2019
16134403717132268807434312 ~2019
16136004305932272008611912 ~2019
16136175637132272351274312 ~2019
16136990696332273981392712 ~2019
Exponent Prime Factor Dig. Year
16137028343932274056687912 ~2019
16137862592332275725184712 ~2019
16137982811932275965623912 ~2019
16138710584332277421168712 ~2019
16139276456332278552912712 ~2019
16139465773132278931546312 ~2019
16140078419932280156839912 ~2019
16140350054332280700108712 ~2019
1614100992673002...46366314 2024
16141722311932283444623912 ~2019
16142500655932285001311912 ~2019
16142600738332285201476712 ~2019
16145130245932290260491912 ~2019
16145285336332290570672712 ~2019
16145520889132291041778312 ~2019
16146972896332293945792712 ~2019
16147795388332295590776712 ~2019
16149264014332298528028712 ~2019
16149804065932299608131912 ~2019
16152518299132305036598312 ~2019
16153678331932307356663912 ~2019
16153972279132307944558312 ~2019
16154075813932308151627912 ~2019
16154689055932309378111912 ~2019
16156009135132312018270312 ~2019
Exponent Prime Factor Dig. Year
16156331381932312662763912 ~2019
16157057083132314114166312 ~2019
16158217019932316434039912 ~2019
16159376191132318752382312 ~2019
16159487858332318975716712 ~2019
16161807476332323614952712 ~2019
16163036827132326073654312 ~2019
16164845132332329690264712 ~2019
16164997315132329994630312 ~2019
16165341356332330682712712 ~2019
16166124383932332248767912 ~2019
16166715080332333430160712 ~2019
16167013321132334026642312 ~2019
1616774594394025...00311115 2023
16168140449932336280899912 ~2019
16168695169132337390338312 ~2019
16170109207132340218414312 ~2019
16171842269932343684539912 ~2019
16172596601932345193203912 ~2019
16172875637932345751275912 ~2019
16173045866332346091732712 ~2019
16173750797932347501595912 ~2019
16175044754332350089508712 ~2019
16176443096332352886192712 ~2019
16176874211932353748423912 ~2019
Exponent Prime Factor Dig. Year
16180812689932361625379912 ~2019
16181069612332362139224712 ~2019
16182111605932364223211912 ~2019
16182282887932364565775912 ~2019
16184388194332368776388712 ~2019
16186442120332372884240712 ~2019
16187005328332374010656712 ~2019
16189177549132378355098312 ~2019
16189180909132378361818312 ~2019
16191139379932382278759912 ~2019
16191228731932382457463912 ~2019
16191810515932383621031912 ~2019
16196032676332392065352712 ~2019
16196163571132392327142312 ~2019
16196321653132392643306312 ~2019
16196551063132393102126312 ~2019
16196619817132393239634312 ~2019
16199147807932398295615912 ~2019
16199370002332398740004712 ~2019
16201581131932403162263912 ~2019
16201882285132403764570312 ~2019
16202147161132404294322312 ~2019
16202998133932405996267912 ~2019
16204065007132408130014312 ~2019
16204668067132409336134312 ~2019
Home
4.724.182 digits
e-mail
25-04-13