Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
10669880072321339760144712 ~2017
10670302651121340605302312 ~2017
10670443442321340886884712 ~2017
10671322826321342645652712 ~2017
10671341753921342683507912 ~2017
10672101139364032606835912 ~2018
10674057323921348114647912 ~2017
10675334983121350669966312 ~2017
1067554657793330...32304914 2024
10676743615121353487230312 ~2017
10677801647364066809883912 ~2018
10678140569364068843415912 ~2018
10678268227121356536454312 ~2017
10678540463921357080927912 ~2017
10678918027121357836054312 ~2017
10679031823121358063646312 ~2017
10679465225921358930451912 ~2017
10679653009121359306018312 ~2017
10679716129121359432258312 ~2017
10680788279921361576559912 ~2017
10681576723121363153446312 ~2017
10682580871121365161742312 ~2017
10683877621121367755242312 ~2017
10684745471364108472827912 ~2018
10686056653121372113306312 ~2017
Exponent Prime Factor Dig. Year
1068654781912586...72222314 2024
10687186976321374373952712 ~2017
10687553773121375107546312 ~2017
10688591131121377182262312 ~2017
10689214658321378429316712 ~2017
10689819548321379639096712 ~2017
10690005163121380010326312 ~2017
10690105106321380210212712 ~2017
10691166535121382333070312 ~2017
10692708691121385417382312 ~2017
1069423576311206...40776915 2025
10695077894321390155788712 ~2017
10696029464321392058928712 ~2017
10696568677121393137354312 ~2017
10698653675921397307351912 ~2017
10699157431121398314862312 ~2017
10699817952164198907712712 ~2018
10701061940321402123880712 ~2017
10701739742321403479484712 ~2017
10702139276321404278552712 ~2017
10702308983921404617967912 ~2017
10702824206321405648412712 ~2017
10702956105764217736634312 ~2018
10702989611921405979223912 ~2017
10703025014321406050028712 ~2017
Exponent Prime Factor Dig. Year
10704778197764228669186312 ~2018
10704885675764229314054312 ~2018
10705064723921410129447912 ~2017
1070522343892397...50313714 2024
10706913653364241481919912 ~2018
10706955623921413911247912 ~2017
10707388484321414776968712 ~2017
1070746717091520...38267914 2024
10707831284321415662568712 ~2017
10708079485121416158970312 ~2017
10708112875121416225750312 ~2017
10708398317921416796635912 ~2017
10708989295121417978590312 ~2017
10709044645121418089290312 ~2017
10709317435121418634870312 ~2017
10710495287921420990575912 ~2017
10711932554321423865108712 ~2017
10712227907921424455815912 ~2017
10713251456321426502912712 ~2017
10713278933921426557867912 ~2017
10713357386321426714772712 ~2017
10713368687921426737375912 ~2017
10714236389921428472779912 ~2017
10714361155121428722310312 ~2017
10714940546321429881092712 ~2017
Exponent Prime Factor Dig. Year
10715459018321430918036712 ~2017
10715689379921431378759912 ~2017
10715964951764295789710312 ~2018
1071668931673515...95877714 2023
10717161932321434323864712 ~2017
10717619785364305718711912 ~2018
10719756528164318539168712 ~2018
10719950972321439901944712 ~2017
10720609376321441218752712 ~2017
10721947750164331686500712 ~2018
10722035740164332214440712 ~2018
10723783669121447567338312 ~2017
10724343620321448687240712 ~2017
10726440613121452881226312 ~2017
10726913839121453827678312 ~2017
1072709925594119...14265714 2023
10728491909921456983819912 ~2017
10728559616321457119232712 ~2017
10729577741921459155483912 ~2017
10730046461921460092923912 ~2017
10731529537121463059074312 ~2017
10731707150321463414300712 ~2017
10732411190321464822380712 ~2017
10732652726321465305452712 ~2017
10733109133121466218266312 ~2017
Home
4.724.182 digits
e-mail
25-04-13