Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
12764249047125528498094312 ~2018
12764645567925529291135912 ~2018
12765134999376590809995912 ~2019
12765262872176591577232712 ~2019
12765447745125530895490312 ~2018
12765747739376594486435912 ~2019
12766201667376597210003912 ~2019
12767225334176603352004712 ~2019
12767942353376607654119912 ~2019
12768105653925536211307912 ~2018
12768415523925536831047912 ~2018
12770214815925540429631912 ~2018
12770312923125540625846312 ~2018
1277116258873192...47175114 2024
12771336829125542673658312 ~2018
12772273493925544546987912 ~2018
12773078449125546156898312 ~2018
12774374430176646246580712 ~2019
12774510371925549020743912 ~2018
12774553555125549107110312 ~2018
12774663217125549326434312 ~2018
12775033669125550067338312 ~2018
12775947563925551895127912 ~2018
12780251665125560503330312 ~2018
12780362743125560725486312 ~2018
Exponent Prime Factor Dig. Year
12780874237125561748474312 ~2018
12781534694325563069388712 ~2018
12783006221925566012443912 ~2018
12783182120325566364240712 ~2018
12784380023376706280139912 ~2019
12784995806325569991612712 ~2018
12785440165125570880330312 ~2018
12786011072325572022144712 ~2018
12786768715125573537430312 ~2018
12787976015925575952031912 ~2018
12789009173925578018347912 ~2018
12789788618325579577236712 ~2018
12791058149925582116299912 ~2018
12792810733776756864402312 ~2019
12793598419125587196838312 ~2018
12794275148325588550296712 ~2018
12795884669925591769339912 ~2018
12796295846325592591692712 ~2018
12796460923125592921846312 ~2018
12796482769376778896615912 ~2019
12797076193125594152386312 ~2018
12798422179125596844358312 ~2018
12799782253125599564506312 ~2018
12800258570325600517140712 ~2018
12800655036176803930216712 ~2019
Exponent Prime Factor Dig. Year
12801069278325602138556712 ~2018
12802612603776815675622312 ~2019
12802867327125605734654312 ~2018
12803532253125607064506312 ~2018
12803640641925607281283912 ~2018
12804404075925608808151912 ~2018
12804441266325608882532712 ~2018
12804999680325609999360712 ~2018
12806599513125613199026312 ~2018
12806639744325613279488712 ~2018
12807320617125614641234312 ~2018
12807839497125615678994312 ~2018
12807906775125615813550312 ~2018
12808341920325616683840712 ~2018
12809696702325619393404712 ~2018
1280986753794534...08416714 2023
12810285205776861711234312 ~2019
12810960500325621921000712 ~2018
12811026670176866160020712 ~2019
12811715906325623431812712 ~2018
12811716202176870297212712 ~2019
12812184914325624369828712 ~2018
12812349295125624698590312 ~2018
12812751404325625502808712 ~2018
12812776490325625552980712 ~2018
Exponent Prime Factor Dig. Year
1281501016493383...83533714 2024
12815414791125630829582312 ~2018
12816806210325633612420712 ~2018
12817379510325634759020712 ~2018
12819038627925638077255912 ~2018
12819249157125638498314312 ~2018
12819418225125638836450312 ~2018
12821099971125642199942312 ~2018
12821819081925643638163912 ~2018
12822105403376932632419912 ~2019
12823494565125646989130312 ~2018
12824194261776945165570312 ~2019
12825497609925650995219912 ~2018
12826700792325653401584712 ~2018
12827524778325655049556712 ~2018
12828302879925656605759912 ~2018
12828680023125657360046312 ~2018
12828739139925657478279912 ~2018
12829016750325658033500712 ~2018
12829871240325659742480712 ~2018
12830854369125661708738312 ~2018
12831085553925662171107912 ~2018
12831134972325662269944712 ~2018
12831559315125663118630312 ~2018
12832359229776994155378312 ~2019
Home
4.724.182 digits
e-mail
25-04-13