Home e-mail
Small Mersenne Prime Factors
Prime numbers of the form Mp= 2p − 1 are called Mersenne primes. For Mp to be prime, p must also be prime.
Any factor q of a Mersenne number 2p − 1 must be of the form 2kp + 1, where integer k ≥ 0. Furthermore, q must be 1 or 7 mod 8.
Exponent Prime Factor Dig. Year
254146656235082933124711 ~2012
254162411995083248239911 ~2012
2541626181715249757090312 ~2013
254168050795083361015911 ~2012
2541695149315250170895912 ~2013
2541766347715250598086312 ~2013
254177568115083551362311 ~2012
2541931040920335448327312 ~2014
254201848195084036963911 ~2012
2542332741715253996450312 ~2013
254268494635085369892711 ~2012
2542697020120341576160912 ~2014
254274474115085489482311 ~2012
254274728395085494567911 ~2012
254277357595085547151911 ~2012
254287323835085746476711 ~2012
254289309595085786191911 ~2012
254299390195085987803911 ~2012
254300088715086001774311 ~2012
254311994995086239899911 ~2012
254324006635086480132711 ~2012
254328500395086570007911 ~2012
254329188115086583762311 ~2012
254331583195086631663911 ~2012
2543434969720347479757712 ~2014
Exponent Prime Factor Dig. Year
254345017315086900346311 ~2012
2543777455340700439284912 ~2015
254401696915088033938311 ~2012
254425069315088501386311 ~2012
2544363463925443634639112 ~2014
254440061035088801220711 ~2012
254442033115088840662311 ~2012
2544507074361068169783312 ~2015
2544560274725445602747112 ~2014
254471855635089437112711 ~2012
2544732763715268396582312 ~2013
2544756505715268539034312 ~2013
254510396395090207927911 ~2012
2545106841125451068411112 ~2014
2545182331720361458653712 ~2014
254519082715090381654311 ~2012
254523903115090478062311 ~2012
254535625315090712506311 ~2012
254541721795090834435911 ~2012
254561198035091223960711 ~2012
254561474995091229499911 ~2012
254604069715092081394311 ~2012
2546042839720368342717712 ~2014
254620353835092407076711 ~2012
254660533915093210678311 ~2012
Exponent Prime Factor Dig. Year
254661579715093231594311 ~2012
254665616515093312330311 ~2012
2546766855740748269691312 ~2015
2546769925120374159400912 ~2014
254679249595093584991911 ~2012
2547014543920376116351312 ~2014
254705920195094118403911 ~2012
254727077635094541552711 ~2012
254740495915094809918311 ~2012
254762255395095245107911 ~2012
254771332195095426643911 ~2012
254783298235095665964711 ~2012
2547851194325478511943112 ~2014
254790529195095810583911 ~2012
254791080235095821604711 ~2012
254793506515095870130311 ~2012
254799345835095986916711 ~2012
254805633235096112664711 ~2012
254816205133113...26688714 2024
254824763035096495260711 ~2012
254827374115096547482311 ~2012
2548313878115289883268712 ~2013
254849618995096992379911 ~2012
254851708315097034166311 ~2012
2548520755715291124534312 ~2013
Exponent Prime Factor Dig. Year
254854535995097090719911 ~2012
2548849111735683887563912 ~2014
2548883364115293300184712 ~2013
254913074035098261480711 ~2012
254915346115098306922311 ~2012
254940286915098805738311 ~2012
254945312395098906247911 ~2012
254954809435099096188711 ~2012
254962560595099251211911 ~2012
254968369195099367383911 ~2012
254989836235099796724711 ~2012
255004871395100097427911 ~2012
255005977195100119543911 ~2012
255008941795100178835911 ~2012
2550097302115300583812712 ~2013
2550224139715301344838312 ~2013
255022894435100457888711 ~2012
2550421160935705896252712 ~2014
255044484715100889694311 ~2012
2550472332725504723327112 ~2014
255054645715101092914311 ~2012
2550553561120404428488912 ~2014
2550585802340809372836912 ~2015
255067839835101356796711 ~2012
255073500595101470011911 ~2012
Home
5.157.210 digits
e-mail
25-11-02